Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{10^{2014}+1}{10^{2015}+1}< 1\Rightarrow B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}\)
\(\Rightarrow B< \frac{10^{2014}+10}{10^{2015}+10}\)
\(\Rightarrow B< \frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}\)
\(\Rightarrow B< \frac{10^{2013}+1}{10^{2014}+1}\)
\(\Rightarrow B< A\)
Vậy A > B
đặt A=\(\frac{10^{2011}+10}{10^{2012}+10}\)
=>10A=\(\frac{10\left(10^{2011}+10\right)}{10^{2012}+10}=\frac{10^{2012}+100}{10^{2012}+10}=\frac{10^{2012}+10}{10^{2012}+10}+\frac{90}{10^{2012}+10}=1+\frac{90}{10^{2012}+10}\)
đặt B=\(\frac{10^{2012}-10}{10^{2013}-10}\)
=>10B=\(\frac{10\left(10^{2012}-10\right)}{10^{2013}-10}=\frac{10^{2013}-100}{10^{2013}-10}=\frac{10^{2013}-10}{10^{2013}-10}+\frac{-90}{10^{2013}-10}=1+\frac{-90}{10^{2013}-10}\)
vì \(\frac{-90}{10^{2013}-10}\) luôn âm nên
\(1+\frac{90}{10^{2012}+10}>1+\frac{-90}{10^{2013}-10}\)
vậy \(A>Bhay\frac{10^{2011}+10}{10^{2012}+10}>\frac{10^{2012}-10}{10^{2013}-10}\)
có :
\(B=\frac{10^{2015}+1}{10^{2014}+1}>1\)
\(\Rightarrow\frac{10^{2015}+1}{10^{2014}+1}>\frac{10^{2015}+1+9}{10^{2014}+1+9}\) \(=\frac{10^{2015}+10}{10^{2014}+10}=\frac{10.\left(10^{2014}+1\right)}{10.\left(10^{2013}+1\right)}\)
\(=\frac{10^{2014}+1}{10^{2013}+1}=A\)
\(\Rightarrow B>A\)
Vậy B > A
k cho mk nhé
\(\frac{429}{639}>\frac{219}{333}\)
\(\frac{10^{15}+1}{10^{16}+1}>\frac{10^{16}+1}{10^{17}+1}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)