K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

\(\frac{429}{639}>\frac{219}{333}\)

\(\frac{10^{15}+1}{10^{16}+1}>\frac{10^{16}+1}{10^{17}+1}\)

26 tháng 7 2017

ngu quá

15 tháng 7 2019

b) Áp dụng  tính chất

\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)

Ta có: \(B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10.\left(10^{15}+1\right)}{10.\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)

\(\Rightarrow B< A\)

18 tháng 7 2019

\(B< 1\Rightarrow\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)

\(\Rightarrow A>B\)

1 tháng 3 2016

\(10A=\frac{10^{16}+10}{10^{16}+1}=\frac{10^{16}+1+9}{10^{16}+1}=\frac{1+9}{10^{16}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}=\frac{10^{17}+1+9}{10^{17}+1}=\frac{1+9}{10^{17}+1}\)

\(\frac{1+9}{10^{16}+1}\)>\(\frac{1+9}{10^{17}+1}\)

=>10A>10B

=>A>B

3 tháng 5 2019

a) \(\frac{3}{-4}=\frac{-3}{4};\frac{-1}{-4}=\frac{1}{4}\)

Vì - 3 < 1 nên \(\frac{-3}{4}< \frac{1}{4}\)

hay \(\frac{3}{-4}< \frac{-1}{-4}\)

3 tháng 5 2019

Quy đồng mẫu ta được:

15/17=15.27/17.27=405/459

25/27=25.17/27.27=425/459

⇒405/459<425/459⇒15/17<25/27

23 tháng 2 2017

a) Ta có: \(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)

\(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\Rightarrow1+\frac{9}{10^{16}+1}>1+\frac{9}{10^{17}+1}\)

\(\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

Vậy A > B

b) Ta có: \(\frac{1}{10}C=\frac{10^{1992}+1}{10^{1992}+10}=1+\frac{10^{1992}+1}{9}\)

\(\frac{1}{10}D=\frac{10^{1993}+1}{10^{1993}+10}=1+\frac{10^{1993}+1}{9}\)

\(\frac{10^{1992}+1}{9}< \frac{10^{1993}+1}{9}\Rightarrow1+\frac{10^{1992}+1}{9}< 1+\frac{10^{1993}+1}{9}\)

\(\Rightarrow\frac{1}{10}C< \frac{1}{10}D\)

\(\Rightarrow C< D\)

Vậy C < D

20 tháng 2 2017

Ta có:

\(A=\frac{10^{15}+1}{10^{16}+1}=\frac{10^{16}+10}{10^{16}+1}=\frac{10^{16}+1+9}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)

\(B=\frac{10^{16}+1}{10^{17}+1}=\frac{10^{17}+10}{10^{17}+1}=\frac{10^{17}+1+9}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)

Vì \(\frac{1}{10^{16}+1}>\frac{1}{10^{17}+1}\)

\(\Rightarrow\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\)

\(\Rightarrow1+\frac{9}{10^{16}+1}>1+\frac{9}{10^{17}+1}\)

\(\Rightarrow A>B\)

20 tháng 2 2017

Cảm ơn bạn nhiều nha!

18 tháng 12 2017

giúp mình với mai phải nộp rồi