Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{2009^{2008}+1}{2009^{2009}+1}\)và \(B=\frac{2009^{2009}+1}{2009^{2010}+1}\)
\(A=\frac{2009^{2008}+1}{2009^{2009}+1}\Rightarrow2009A=\frac{2009.\left(2009^{2008}+1\right)}{2009^{2009}+1}=\frac{2009^{2009}+2009}{2009^{2009}+1}=1+\frac{2008}{2009^{2009}+1}\)
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}\Rightarrow2009B=\frac{2009.\left(2009^{2009}+1\right)}{2009^{2010}+1}=\frac{2009^{2010}+2009}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}\)
Vì \(\frac{2008}{2009^{2009}+1}>\frac{2008}{2009^{2010}+1}\Rightarrow2009A>2009B\Rightarrow A>B\)
Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:
\(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)
\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)
\(=2009^{2008}-1\)
\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)
\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008
=> ĐPCM
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008
Ta có:
+)A=2009+20092+20093+20094+...+20092009
2009A= 20092+20093+20094+...+20092010
2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)
2008A=20092010- 2009
=> A=(20092010- 2009)/2008
=> A chia hết cho 2008.
B=1+2009+20092+20093+20094+...+20092008
2009B=2009+20092+20093+20094+...+20092010
2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)
2008B=20092010-1
=>B=(20092010-1)/2008
=>B chia hết cho 2008
=> A-B chia hết cho 2008.
=> ĐPCM
Ta có :
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
Vậy A > B
\(2009A=\frac{2009^{2010}+2009}{2009^{2010}+1}=\)\(\frac{2009^{2010}+1+2008}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}\)
\(2009B=\frac{2009^{2009}+2009}{2009^{2009}+1}=\frac{2009^{2009}+1+2008}{2009^{2009}+1}\)\(=1+\frac{2008}{2009^{2009}+1}\)
Vì \(1+\frac{2008}{2009^{2010}+1}< 1+\frac{2008}{2009^{2009}+1}\) \(\Leftrightarrow A< B\)
\(A=\frac{2009^{2009}+1}{2009^{2010}+1}\Rightarrow2009A=\frac{2009^{2010}+2009}{2009^{2010}+1}\)
\(2009A=\frac{2009^{2010}+1}{2009^{2010}+1}+\frac{2008}{2009^{2010}+1}\)
\(2009A=1+\frac{2008}{2009^{2010}+1}\)
..... sory bn mk hơi luwoif chút nên bn tự lm tương tự vs phần B và so sánh nhé!^^
Ta có :
\(m.A=\frac{m^{2009}+m}{m^{2009}+1}=\frac{m^{2009}+1+\left(m-1\right)}{m^{2009}+1}=1+\frac{m-1}{m^{2009}+1}\)
\(m.B=\frac{m^{2010}+m}{m^{2010}+1}=\frac{m^{2010}+1+\left(m-1\right)}{m^{2010}+1}=1+\frac{m-1}{m^{2010}+1}\)
Vì m2009+1 < m2010+1 => m.A > m.B => A > B
K NHA BẠN