K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

\(\frac{2016}{2015}>1;\frac{2015}{2014}>1;\frac{2014}{2013}>1.\)

\(\Rightarrow\frac{2016}{2015}+\frac{2015}{2014}+\frac{2014}{2013}>1+1+1=3\)

Vậy A>3

12 tháng 7 2016

\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(1-\frac{1}{2015}\right)+\left(1-\frac{1}{2016}\right)+\left(1+\frac{2}{2014}\right)\)

                                   \(=3-\left(\frac{1}{2015}-\frac{1}{2016}+\frac{2}{2014}\right)\)

Dễ thấy \(\frac{1}{2015}-\frac{1}{2016}+\frac{2}{2014}>0\) vì \(\frac{1}{2015}>\frac{1}{2016}\)

Do đó \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}< 3\)

15 tháng 3 2019

A = 2014*2015 + 2015/2016 + 2016/2014

A = (1 - 1/2015) + (1 - 1/2016) + (1 + 2/2014)

A = 3 + (2/2014 - 1/2015 - 1/2016)

A = 3 + (2*2015*2016 - 2014*2016 - 2014*2015) / (2014*2015*2016)

Đặt B = 2*2015*2016 - 2014*2016 - 2014*2015

Ta có: A = 3 + B/(2014*2015*2016)

Nhận xét: Từ các phép biến đổi trên ta thấy A là tổng của 3 với một phân số có mẫu số dương. Do vậy, để so sánh A với 3 ta chỉ cần so sánh B với 0.

B = 2*2015*2016 - 2014*2016 - 2014*2015

B = 2016(2*2015 - 2014) - 2014*2015

B = 2016(2*2015 - 2014) - 2014(2016 - 1)

B = 2016(2*2015 - 2014) - 2014*2016 + 2014

B = 2016(2*2015 - 2014 - 2014) + 2014

B = 2016(2*2015 - 2*2014) + 2014

B = 2*2016(2015 - 2014) + 2014

B = 2*2016 + 2014 > 0

Vậy A > 3 (Đáp số)

\(x=\frac{-2014}{-2013}=\frac{2014}{2013}>1\)

\(y=\frac{-2015}{-2016}=\frac{2015}{2016}<1\)

vậy x>y

Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)

\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)

\(=BC+C-BC-B\)

=C-B

\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

13 tháng 6 2016

Xét hiệu A-B. Sau khi quy đồng ta được.

\(A-B=\frac{2013^{2015}-2013^{2014}-\left(2013^{2016}-2013^{2013}\right)}{\left(2013^{2016}-1\right)\left(2013^{2014}+1\right)}=\frac{2013^{2015}-2013^{2016}+2013^{2013}-2013^{2014}}{\left(2013^{2016}-1\right)\left(2013^{2014}+1\right)}< 0\)

Nên A<B.