K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{10^{2017}+1}{10^{2018}+1}\)

=>\(10A=\dfrac{10^{2018}+1+9}{10^{2018}+1}=1+\dfrac{9}{10^{2018}+1}\)

\(B=\dfrac{10^{2018}+1}{10^{2019}+1}\)

=>\(10B=\dfrac{10^{2019}+1+9}{10^{2019}+1}=1+\dfrac{9}{10^{2019}+1}\)

Do đó:\(10B< 10A\)=>\(B< A\)

7 tháng 9 2017

\(A=\dfrac{10^{2017}+1}{10^{2018}+1}\)

\(10A=\dfrac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\dfrac{10^{2018}+10}{10^{2018}+1}=\dfrac{10^{2018}+1+9}{10^{2018}+1}=\dfrac{10^{2018}+1}{10^{2018}+1}+\dfrac{9}{10^{2018}+1}=1+\dfrac{9}{10^{2018}+1}\)\(B=\dfrac{10^{2018}+1}{10^{2019}+1}\)

\(10B=\dfrac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\dfrac{10^{2019}+10}{10^{2019}+1}=\dfrac{10^{2019}+1+9}{10^{2019}+1}=\dfrac{10^{2019}+1}{10^{2019}+1}+\dfrac{9}{10^{2019}+1}=1+\dfrac{9}{10^{2019}+1}\)\(1+\dfrac{9}{10^{2018}+1}>1+\dfrac{9}{10^{2019}+1}\)

Nên \(10A>10B\)

Nên \(A>B\)

6 tháng 9 2017

 ta có :

\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)

mà \(5^{2017}>5^{2016}\)

\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)

\(\Rightarrow\)\(5^{2017}>25^{1008}\)

6 tháng 9 2017

có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)

mà \(=25^{1008}\times5\)\(25^{1008}\)

nên \(5^{2017}>25^{1008}\)

29 tháng 10 2017

khó quá hè oho

29 tháng 10 2017

a)20172018=...78=...4

20182019=...89=...8

20192020=...90=...0

20202021=...0

Vì 4+8+0+8=...0

Vậy A chia hết cho 10

14 tháng 7 2016

GIúp t vs bây

2 tháng 1 2020

\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)

\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x>y\)

15 tháng 7 2018

\(A< \frac{\left(10^{10}-1\right)+11}{\left(10^{11}-1\right)+11}< \frac{10^{10}+10}{10^{11}+10}< \frac{10\left(10^9+1\right)}{10\left(10^{10}+1\right)}< \frac{10^9+1}{10^{10}+1}\)

\(\Rightarrow A< B\)

Vậy A<B

2 tháng 7 2018

Đặt \(A=\frac{2^{2017}+1}{2^{2018}+1}\Rightarrow2A=\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

\(B=\frac{2^{2018}+1}{2^{2019}+1}\Rightarrow2B=\frac{2^{2019}+2}{2^{2019}+1}=\frac{2^{2019}+1+1}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Vì \(2^{2019}+1>2^{2018}+1\Rightarrow\frac{1}{2^{2019}+1}< \frac{1}{2^{2018}+1}\)

\(\Rightarrow2A>2B\Rightarrow A>B\)