Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 999995=a. Ta có A=(a-1)(a+4)(a-3)-(a+1)(a-4)(a+3)=24
Đặt 444444=b. Ta có B=(b-1)(b+4)(b-3)-(b+1)(b-4)(b+3)=24
Vậy a=b
a) Ta có: a < b => a + 1 < b + 1
b) Ta có: a < b => a - 2 < b - 2
a) ta có: a<b
=> a + 1 < b + 1
b) ta có: a<b
=> a - 2 < b - 2
(Bạn tự vẽ hình)
a) Gọi AH giao BC tại điểm F. H là trực tâm của tam giác ABC => AH vuông góc với BC tại F.
Xét tam giác ABC: AF vuông góc BC, AB<AC => BF<CF (Quan hệ đường xiên, hình chiếu)
Xét tam giác AFB và tam giác AFC có:
Cạnh AF chung
^AFB=^AFC=90o => ^BAF < ^CAF (Quan hệ giữa góc và cạnh đối diện trong 2 tam giác)
BF<CF (cmt)
^BAF < ^CAF hay ^BAH<^CAH (đpcm)
b) Tam giác ABC có: AB<AC => ^ABC>^ACB hay ^EBC>^DCB.
Xét tam giác BEC và tam giác CDB có:
^BEC=^CDB=90o
Cạnh BC chung => CE>BD.
^EBC>^DCB (cmt)
Vậy CE>BD.
Ta có \(A=2003.2005=2003.\left(2004+1\right)=2003.2004+2003\)
\(B=2004^2=2004.2004=2004.\left(2003+1\right)=2003.2004+2004\)
Vì 2003<2004 nên 2003.2004+2003<2003.2004+2004
Vậy A<B
\(A=2003.2005=\left(2004-1\right)\left(2004+1\right)=2004^2-1< 2004^2=B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(A=2003.2005=\left(2004-1\right)\left(2004+1\right)=2004^2-1< 2004^2=B\)
Vậy \(A< B\).Chúc bạn học tốt.
\(A=2003\cdot2005\)
\(A=\left(2004-1\right)\left(2004+1\right)\)
\(A=2004^2-1< 2004^2=B\)
Vậy \(A< B\)