Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2 + 22 + 23 + 24 + ... + 2101
Khi đó 2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)
=> A = 2101 - 1
Vì 2101 - 1 < 2101
=> A < B
Vậy A < B
A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101
=> A = 2A - A
= 2 + 22 + 23 + ... + 2101 - ( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101 - 1 - 2 - 22 - 23 - ... - 2100
= 2101 - 1 < 2101
=> A < B
\(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{10}\)
\(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{10}\)
Thấy: 3 > 2 và 910 > 810
Nên \(3^{21}>2^{31}\)
Bài 2:
\(A=1+2+2^2+.....+2^{100}\)
\(2A=2+2^2+.......+2^{101}\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+......+2^{101}-1\)
Vậy A = 2101 - 1
a )
2100+2100= 2100(1+1) =2100.2 = 2100+1= 2101
b)
3100+3100 = 3100(1+1) = 2.3100
3101= 3100.3
ta thấy 3. 3100 > 2.3100 Vậy 3101 > 3100+3100
c) 20177012 > 20172337.3 >>> 80002337
70122017 < 80002337
suy ra: 20177012 >>> 70122017
b/ 2^100
= 2^31 . 2^69
= 2^31 . 2^63 . 2^6
= 2^31 . (2^9)^7 . (2^2)^3
= 2^31 . 512^7 . 4^3 (1)
10^31
= 2^31 . 5^31
= 2^31 . 5^28 . 5^3
= 2^31 . (5^4)^7 . 5^3
= 2^31 . 625^7 . 5^3 (2)
Từ (1) và (2), ta có:
2^31 . 512^7 . 4^3 < 2^31 . 312^7 . 5^3 < 2^31 . 625^7 . 5^3.
Hay 2^100 < 10^31.
a/
10^30=1000^10<1024^10=2^100
\(10^{30}=2^{30}.5^{30}\)
\(2^{100}=2^{30}.2^{70}\)
Vì 230 = 230 => Ta so sánh 530 và 270
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(2^{70}=\left(2^7\right)^{10}=128^{10}\)
Vì 12510 < 12810 => 1030 > 2100
ta thấy 27^ 5 = (3^3)^5 = 3^15 = (3^5)^3 = 243^3
10^30 = 2^30 * 5^30 ta có 5^30 = 125^10 <128^10 = 2 ^ 70 => 2^30 * 5^30 < 2^30 * 2^70 <=> 10^30 < 2^100
ta lại có 303 ^404 = 8428892481^111 > 87528384 ^111 = 444^333
ta có 13^40 < 16^40 < 16^40 * 2 = 2 ^161
mk chỉ giải đc một nấy thui
Có : 6^100 = (2.3)^100 = 2^100.3^100 > 2^99.3^100
8^33.9^50 = (2^3)^33.(3^2)^50 = 2^99.3^100
=> 6^100 > 8^33.9^50
k mk nha
\(S=1+2+2^2+...+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{101}\)
\(\Rightarrow S=2^{101}-1\)
\(\Rightarrow S=2^{101}-1< 2^{122}\)
S = 1 + 2 + 2^2 +......+ 2^100
2S = 2 x (1 + 2 + 2^2 +.......+ 2^100)
2S = 2 + 2^2 + 2^3 +....+ 2^100 + 2^101
2S - S = (2 + 2^2 + 2^3 +.....+2^100 + 2^101)-(1+2+2^2+.....+2^100)
S = 2^101 - 1
=> 2^101-1 < 2^122
Ta có:
\(2^{100}=\left(2^{50}\right)^2=5120^2\)
=> \(5120^2>100^2\)
Vậy \(2^{100}>100^2\)
k mik nha mik đang âm điểm