K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2016

Ta có: \(\frac{a}{b+2016}< \frac{a}{b}\) và \(\frac{2016}{b+2016}< \frac{a}{b}\)

=>  \(\frac{a}{b+2016}+\frac{2016}{b+2016}< \frac{a}{b}\)

hay \(\frac{a+2016}{b+2016}< \frac{a}{b}\)

31 tháng 5 2016

n

nếu a>b hay a/b > 1 ta có 2016a > 2016b 

                                => 2016a + ab > 2016b + ab 

                               => a ( 2016 + b) > b ( 2016 + a )

                               => a/b > a+2016/b+2016 

tương tự với 2 trường hợp

 nếu a < b thì a/b < a+2016/b+2016

nếu a = b thì a/b = a+2016/b+2016

14 tháng 6 2016

Xét hiệu:

\(H=\frac{a}{b}-\frac{a+2016}{b+2016}=\frac{a\cdot\left(b+2016\right)-\left(a+2016\right)\cdot b}{b\left(b+2016\right)}=\frac{2016\cdot\left(a-b\right)}{b\left(b+2016\right)}.\)

  • Nếu b<-2016 và a>b thì H>0; a<b thì H<0
  • -2016<b<0 và a>b thì H<0; a<b thì H>0
  • Nếu b>0 và a>b thì H>0; a<b thì H<0

tùy H>0 hay H<0 mà ta biết được kq của sự so sánh.

24 tháng 8 2016

+\(\frac{a}{b}=1\Leftrightarrow a=b\Leftrightarrow\frac{a}{b}=\frac{a+2016}{b+2016}\)

+\(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow\frac{a}{b}-1=\frac{a-b}{b}>\frac{a-b}{b+2016}=\frac{a+2016}{b+2016}-1\)=> \(\frac{a}{b}>\frac{a+2016}{b+2016}\)

+\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow1-\frac{a}{b}=\frac{b-a}{b}>\frac{b-a}{b+2016}=1-\frac{a+2016}{b+2016}\)=>\(\frac{a}{b}< \frac{a+2016}{b+2016}\)

14 tháng 6 2016

Ta có        \(\frac{a}{b}-1=\frac{a}{b}-\frac{b}{b}=\frac{a-b}{b}\)

                \(\frac{a+2016}{b+2016}-1=\frac{a+2016}{b+2016}-\frac{b+2016}{b+2016}=\frac{a+2016-b-2016}{b+2016}=\frac{a-b}{b+2016}\)

 So sánh  nứa là ra ok bạn

7 tháng 9 2016

dài lắm 

có gì hoi sau

7 tháng 9 2016

nek sao bn kì z? giúp ng ta thì giúp cho đàng hoàng nhá. bn ns dài lắm lak xog ak???

13 tháng 6 2016

Ta có:

\(\frac{a}{b}\)\(\frac{a\left(b+2016\right)}{b\left(b+2016\right)}\)=\(\frac{ab+2016a}{b\left(b+2016\right)}\)

\(\frac{a+2016}{b+2016}\)=\(\frac{\left(a+2016\right)b}{\left(b+2016\right)b}\)=\(\frac{ab+2016b}{b\left(b+2016\right)}\)

Vì b > 0 nên mẫu số của hai phân số trên dương. Ta so sánh tử số.

* Nếu a < b => ab+2016a < ab+2016b

=> \(\frac{a}{b}\)<\(\frac{a+2016}{b+2016}\)

* Nếu a = b => ab+2016a = ab+2016b

=> \(\frac{a}{b}\)=\(\frac{a+2016}{b+2016}\)

* Nếu a > b => ab+2016a > ab+2016b

=> \(\frac{a}{b}\)>\(\frac{a+2016}{b+2016}\)

13 tháng 6 2016

Giả sử a/b = 1/3 còn phân số kia là 2017/2019

quy đồng 1/3 = 2017/6051

Vì 6051>2019 nên 2017/2019 > 2017/6051 và 2017/2019>1/3

Vậy \(\frac{a}{b}< \frac{a+2016}{b+2016}\)

7 tháng 9 2016

Nếu 

a < b 

=) \(\frac{a}{b}< \frac{a+2001}{b+2001}\)

Nếu a > b 

=) \(\frac{a}{b}>\frac{a+2001}{b+2001}\)

Nếu a = b 

=) \(\frac{a}{b}=\frac{a+2001}{b+2001}\)

7 tháng 9 2016

Xét tích            \(a\left(b+2001\right)=ab+2001a\\ b\left(a+2001\right)=ab+2001b.\)Vì \(b>0\)nên \(b+2001>0\).

Nếu \(a>b\) thì \(ab+2001a>ab+2001b\\ a\left(b+2001\right)>b\left(a+2001\right)\)

\(\frac{\Rightarrow a}{b}>\frac{a+2001}{b+2001}\) 

Nếu \(a< b\) thì \(\frac{\Rightarrow a}{b}< \frac{a+2001}{b+2001}\)

Nếu \(a=b\) thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)

\(a>b\Rightarrow a+2016>b+2016\)

\(\Rightarrow\frac{a}{b}=\frac{b+a-b}{b}\)

\(\Rightarrow\frac{a+2016}{b+2016}=\frac{b+2016+a+2016-b+2016}{b+2016}=\frac{b+a-a}{b+2016}\)

Vì: \(\frac{b+a-a}{b}>\frac{b+a-b}{b+2016}\)

\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)

7 tháng 7 2016

Ta có:

  • \(\frac{a}{b}=\frac{a\left(b+2016\right)}{b\left(b+2016\right)}\)

               \(=\frac{ab+2016a}{b\left(b+2016\right)}\)

  • \(\frac{a+2016}{b+2016}=\frac{b\left(a+2016\right)}{b\left(b+2016\right)}\)

                             \(=\frac{ab+2016b}{b\left(b+2016\right)}\)

Vì \(a>b\Rightarrow2016a>2016b\)

\(\Rightarrow ab+2016a>ab+2016b\)

\(\Rightarrow\frac{ab+2016a}{b\left(b+2016\right)}>\frac{ab+2016b}{b\left(b+2016\right)}\)

\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)

11 tháng 7 2015

(+) Th1 : a = b 

=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

(+) th2 : a < b 

\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}<\frac{ab+bn}{b\left(b+n\right)}\)

=> \(\frac{a}{b}<\frac{a+n}{b+n}\)

(+) Th3 : a > b tương tự TH2 .

 => \(\frac{a}{b}>\frac{a+n}{b+n}\)

26 tháng 7 2020

Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n) 

                                      <=> a.b+a.n<b.a+b.n

                                      <=> a.n<b.n

                                      <=> a<b                                                =>a/b<a+n/b+n <=> a<b

    Tương tự: a/b>a+n/b+n <=> a>b

23 tháng 8 2016

A+2016/B+2016=A/B+2016/2016=A/B+1

=)A/B<A/B+1

=)A/B<A+2016/B+2016

23 tháng 8 2016

\(\frac{a}{b}\)<\(\frac{a+2016}{b+2016}\)