Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+\(\frac{a}{b}=1\Leftrightarrow a=b\Leftrightarrow\frac{a}{b}=\frac{a+2016}{b+2016}\)
+\(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow\frac{a}{b}-1=\frac{a-b}{b}>\frac{a-b}{b+2016}=\frac{a+2016}{b+2016}-1\)=> \(\frac{a}{b}>\frac{a+2016}{b+2016}\)
+\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow1-\frac{a}{b}=\frac{b-a}{b}>\frac{b-a}{b+2016}=1-\frac{a+2016}{b+2016}\)=>\(\frac{a}{b}< \frac{a+2016}{b+2016}\)
Ta có:
\(\frac{a}{b}\)= \(\frac{a\left(b+2016\right)}{b\left(b+2016\right)}\)=\(\frac{ab+2016a}{b\left(b+2016\right)}\)
\(\frac{a+2016}{b+2016}\)=\(\frac{\left(a+2016\right)b}{\left(b+2016\right)b}\)=\(\frac{ab+2016b}{b\left(b+2016\right)}\)
Vì b > 0 nên mẫu số của hai phân số trên dương. Ta so sánh tử số.
* Nếu a < b => ab+2016a < ab+2016b
=> \(\frac{a}{b}\)<\(\frac{a+2016}{b+2016}\)
* Nếu a = b => ab+2016a = ab+2016b
=> \(\frac{a}{b}\)=\(\frac{a+2016}{b+2016}\)
* Nếu a > b => ab+2016a > ab+2016b
=> \(\frac{a}{b}\)>\(\frac{a+2016}{b+2016}\)
Giả sử a/b = 1/3 còn phân số kia là 2017/2019
quy đồng 1/3 = 2017/6051
Vì 6051>2019 nên 2017/2019 > 2017/6051 và 2017/2019>1/3
Vậy \(\frac{a}{b}< \frac{a+2016}{b+2016}\)
Hay mình làm cụ thể hơn cho bạn dễ hiểu
A+2016/B+2016=A/B+2016/2016=A/B+1
=)A/B<A/B+1
=)A/B<A+2016/B+2016
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
\(\frac{a}{b}=1\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)
\(\frac{a}{b}>1\Rightarrow\frac{a}{b}-1=\frac{a-b}{b}>\frac{a-b}{b+2001}=\frac{a+2001}{b+2001}-1\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)
\(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow1-\frac{a}{b}=\frac{b-a}{b}>\frac{b-a}{b+2001}=1-\frac{a+2001}{b+2001}\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
tíc mình nha
Ta có: \(\frac{a}{b+2016}< \frac{a}{b}\) và \(\frac{2016}{b+2016}< \frac{a}{b}\)
=> \(\frac{a}{b+2016}+\frac{2016}{b+2016}< \frac{a}{b}\)
hay \(\frac{a+2016}{b+2016}< \frac{a}{b}\)
n
nếu a>b hay a/b > 1 ta có 2016a > 2016b
=> 2016a + ab > 2016b + ab
=> a ( 2016 + b) > b ( 2016 + a )
=> a/b > a+2016/b+2016
tương tự với 2 trường hợp
nếu a < b thì a/b < a+2016/b+2016
nếu a = b thì a/b = a+2016/b+2016
\(a>b\Rightarrow a+2016>b+2016\)
\(\Rightarrow\frac{a}{b}=\frac{b+a-b}{b}\)
\(\Rightarrow\frac{a+2016}{b+2016}=\frac{b+2016+a+2016-b+2016}{b+2016}=\frac{b+a-a}{b+2016}\)
Vì: \(\frac{b+a-a}{b}>\frac{b+a-b}{b+2016}\)
\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)
Ta có:
\(=\frac{ab+2016a}{b\left(b+2016\right)}\)
\(=\frac{ab+2016b}{b\left(b+2016\right)}\)
Vì \(a>b\Rightarrow2016a>2016b\)
\(\Rightarrow ab+2016a>ab+2016b\)
\(\Rightarrow\frac{ab+2016a}{b\left(b+2016\right)}>\frac{ab+2016b}{b\left(b+2016\right)}\)
\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)