K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Ta thấy:

 1/3 < 1/2 = 1 - 1/2 

1/7 = 1 / ( 3 x 2 + 1 ) < 1 / ( 3 x 2 ) = 1/2 - 1/3

 1 / 13 = 1 / ( 3 x 4 + 1 ) < 1 / ( 3 x 4 ) = 1/3 - 1/4

 1 / 21 = 1 / ( 4 x 5 + 1 ) < 1 / ( 4 x 5 ) = 1/4 - 1/5 
_____________________________ 
_____________________________ 

1 / 73 = 1 / ( 8 x 9  + 1 ) < 1 / ( 8 x 9 ) = 1/8 - 1/9 
_____________________________ 

Cộng tất cả lại:

 1/3 + 1/7 + 1/13 + 1/21 +...+ 1/73 + ... < ( 1 - 1/2 ) + ( 1/2 - 1/3 ) + ( 1/3 - 1/4 ) + ( 1/4 - 1/5 ) + ....+  ( 1/8 - 1/9 ) + ...< 1

=> DPCM

6 tháng 7 2016

 bạn tăng mẫu lên theo phạm vi nào đó nhưng mãi mãi tử vẫn là 1  và mẫu tăng lên vậy dãy số đó đều bé hơn 1

10 tháng 5 2016

1/ So sánh A với \(\frac{1}{4}\)

Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)

\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)

\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)

Vậy \(A>\frac{1}{4}\)

5 tháng 8 2020

Dấu này * là dấu nhân

Một năm rồi không có ai trả lời à 

20 tháng 9 2017

Bài 1:

a) 3500 = 3100.5 = (35)100 = 243100

5300 = 5100.3 = (53)100 = 125100

Vì 243100 > 125100 nên 3500 > 5300

b) Không thể biết, nếu n > 100 thì thừa lớn hơn, nếu n < 9 thì thừa bé hơn.

3 tháng 5 2017

a)

Ta có : \(32^{13}=\left(2^5\right)^{13}=2^{65}\)

            \(64^{10}=\left(2^6\right)^{10}=2^{60}\)

Mà \(2^{65}>2^{60}\Rightarrow.....\)

b)

A = 2 + 2.2 + 2.2.2 + ... + 2.2.2.2....2

A = \(2+2^2+2^3+...+2^{100}\)

2A = \(2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(A=2^{101}-2\)

3 tháng 5 2017

1.

a) Ta có : 3213 = ( 25 ) 13 = 265

               6410 = ( 26 ) 10 = 260 

Vì 265 > 260 nên 3213 > 6410

b) A = 2 + 2.2 + 2.2.2 + 2.2.2.2 + ... + 2.2.2.2.2...2 ( 100 số 2 )

A = 2 . ( 1 + 2 + 2.2 + 2.2.2 + ... + 2.2.2.2...2 )

A = 2. ( 1 + 2 + 22 + 23 + ... + 299 )

gọi B là biểu thức trong ngoặc

Lại có : B = 1 + 2 + 22 + 23 + ... + 299

         2B = 2 + 22 + 23 + 24 + ... + 2100

         2B - B = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + ... + 299 )

         B = 2100 - 1

\(\Rightarrow\)A = 2 . ( 2100 - 1 )

\(\Rightarrow\)A = 2101 - 2

11 tháng 3 2016

hình như b1 thiếu đề

4 tháng 7 2016

Hình như sai đề bạn ạ!! Thiếu 3thì phải.

1 tháng 8 2020

a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+..........+\frac{2}{73.75}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.......+\frac{1}{73}-\frac{1}{75}\)

\(=\frac{1}{3}-\frac{1}{75}=\frac{8}{25}\)

c) \(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+..........+\frac{4}{64.66}\)

\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+..........+\frac{2}{64.66}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+.....+\frac{1}{64}-\frac{1}{66}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{66}\right)=2.\frac{31}{132}=\frac{31}{66}\)

1 tháng 8 2020

d) \(\frac{9}{5.8}+\frac{9}{8.11}+\frac{9}{11.14}+........+\frac{9}{497.500}\)

\(=3.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+..........+\frac{3}{497.500}\right)\)

\(=3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{497}-\frac{1}{500}\right)\)

\(=3.\left(\frac{1}{5}-\frac{1}{500}\right)=3.\frac{99}{500}=\frac{297}{500}\)

e) \(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+......+\frac{1}{93.95}\)

\(=\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+........+\frac{2}{93.95}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+........+\frac{1}{93}-\frac{1}{95}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{95}\right)=\frac{1}{2}.\frac{18}{95}=\frac{9}{95}\)

g) \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+..........+\frac{1}{200.203}\)

\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{200.203}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{200}-\frac{1}{203}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{203}\right)=\frac{1}{3}.\frac{201}{406}=\frac{67}{406}\)