K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn B

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Xét phương trình \(tanx = 3\)\( \Leftrightarrow \;x{\rm{ }} \approx {\rm{ }}1,25{\rm{ }} + {\rm{ }}k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\).

Do \( - \frac{\pi }{2} < x < \frac{{7\pi }}{3} \Leftrightarrow  - \frac{\pi }{2} < 1,25{\rm{ }} + {\rm{ }}k\pi  < \frac{{7\pi }}{3}\)\( \Leftrightarrow  - 0,9 < k < 1,94,\)\(k\; \in \;\mathbb{Z}\).

Mà k ∈ ℤ nên k ∈ {0; 1}.

Vậy có 2 nghiệm của phương trình đã cho nằm trong khoảng \(\left( { - \frac{\pi }{2};\frac{{7\pi }}{3}} \right)\).

Đáp án: B

19 tháng 7 2019

\({\mathop{\rm tanx}\nolimits} = tan\dfrac{{3\pi }}{{11}} \Leftrightarrow x = \dfrac{{3\pi }}{{11}} + k\pi \Rightarrow \dfrac{{3\pi }}{{11}} + k\pi \in \left( {\dfrac{\pi }{4};2\pi } \right) \Rightarrow k = 0,k = 1\)

Chọn B

NV
20 tháng 8 2020

7.

Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)

Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)

Pt trở thành:

\(\frac{t^2-1}{2}+t=1\)

\(\Leftrightarrow t^2+2t-3=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)

\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)

NV
20 tháng 8 2020

6.

\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)

Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)

NV
19 tháng 10 2019

\(tanx=tan\frac{3\pi}{11}\Rightarrow x=\frac{3\pi}{11}+k2\pi\)

Do \(\frac{\pi}{4}\le x\le2\pi\)

\(\Rightarrow\frac{\pi}{4}\le\frac{3\pi}{11}+k2\pi\le2\pi\)

\(\Rightarrow-\frac{1}{88}\le k\le\frac{19}{22}\)

\(k\in Z\Rightarrow k=0\)

Vậy pt có đúng 1 nghiệm trên đoạn đã cho

25 tháng 7 2019
https://i.imgur.com/frmbVlr.jpg