K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Ta co

\(\Rightarrow5x^2+7y^2=-100\)

Vi \(5x^2\ge0\forall x\in Q\)va \(7y^2\ge0\forall x\in Q\)

\(\Rightarrow5x^2+7y^2\ge0\forall x,y\in Q\Rightarrow x,y\in\varnothing\)

9 tháng 9 2016

==' ahhhh , gửi lộn bài

10 tháng 9 2016

ai giải cho tui vs

 

8 tháng 10 2017

Cái này dễ vc =='

\(5x^2+7y^2=-100\)

Hiển nhiên pt vô nghiệm vì VT\(\ge0\)

Vậy không tồn tại cặp x,y thỏa mãn pt trên

13 tháng 2 2018

MÌnh nghĩ thế này ko bt đúng ko

Ta có: \(\hept{\begin{cases}x^2+1\ge2x\\x^2+y^2\ge2xy\end{cases}}\)

\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)

\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y\ge0\)

Dấu = xảy ra khi x=y=1

Vậy (x;y)=(1;1)

13 tháng 2 2018

Ta có pt \(\Leftrightarrow\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

Áp dụng BĐt cô-si , ta có 

\(x^2+1\ge2\sqrt{x^2}=2x;x^2+y^2\ge2xy\)

Nhân vào, ta có \(\left(x^2+1\right)\left(y^2+x^2\right)\ge4x^2y\)

Dấu = xảy ra <=> x=y=1 

^_^ 

26 tháng 8 2016

Viết dưới dạng pt ẩn x:

\(x^2-2\left(y-3\right)x+\left(y^2-4y+5\right)=0\)

Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow\left(y-3\right)^2-\left(y^2-4y+5\right)\ge0\Leftrightarrow-2y+4\ge0\Leftrightarrow y\le2\)

Vậy Max y = 2, khi đó x = -1.

28 tháng 9 2016

không tồn tại x,y

28 tháng 9 2016

Ta có 5x2 >= 0

7y2 >= 0

=> 5x2 + 7y2 + 100 > 0

Vậy pt vô nghiệm

9 tháng 11 2017

\(\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}\)

\(\Leftrightarrow3x^2-3xy+3y^2=7x+7y\)

\(\Leftrightarrow3x^2+\left(-3y-7\right)x+3y^2-7y=0\)

Để phương trình theo nghiệm x có nghiệm thì:

\(\Delta=\left(-3y-7\right)^2-4.3.\left(3y^2-7y\right)\ge0\)

\(\Leftrightarrow0\le y\le5\)

Thế lần lược các giá trị y cái nào làm cho x nguyên thì nhận.