Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\Leftrightarrow2^5.2^{-2a}< \left(2^5\right)^{-12}\)
\(\Leftrightarrow2^{5-2a}< 2^{-60}\Rightarrow5-2a< -60\Leftrightarrow a>32,5\)
Số nguyên a nhỏ nhất thoả mãn đề bài là a=33
\(2^5\left(\frac{1}{2}\right)^{2a}=2^5.\frac{1}{2^{2a}}=\frac{2^5}{2^{2a}}=\frac{1}{2^{2a-5}};\left(\frac{1}{32}\right)^{12}=\frac{1}{32^{12}}=\frac{1}{\left(2^5\right)^{12}}=\frac{1}{2^{60}}\)
Ta cần tìm số nguyên a nhỏ nhất để \(\frac{1}{2^{2a-5}}< \frac{1}{2^{60}}\Rightarrow2^{2a-5}>2^{60}\Rightarrow2a-5>60\)
=>2a>65=>\(a>\frac{65}{2}=32,5\) mà a là số nguyên nhỏ nhất => a=33
\(\Leftrightarrow\frac{2^5}{2^{2a}}< \frac{1}{2^5}\Leftrightarrow\frac{1}{2^{2a-5}}< \frac{1}{2^5}\Leftrightarrow2^{2a-5}>2^5\)
\(2a-5>5\Leftrightarrow2a>10\Leftrightarrow a>5\)
vì a là số nguyên nhỏ nhất nên a =6
Ta có:\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\)
\(\Leftrightarrow2^5\left(\frac{1}{4}\right)^a< 2^5\cdot\left(\frac{1}{2^{10}}\right)^{12}\)
\(\Leftrightarrow\left(\frac{1}{4}\right)^a< \left(\frac{1}{2^{10}}\right)^{12}\)
\(\Leftrightarrow\left(\frac{1}{2^{2a}}\right)< \left(\frac{1}{2^{10\cdot12}}\right)\)
\(\Leftrightarrow2a>120\)
\(\Leftrightarrow a>60\)
Mà a là số nguyên nhỏ nhất nên a=61
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3