K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

a) (x3 – 7x + 3 – x2) : (x – 3)

b) (2x4 – 3x2 – 3x2 – 2 + 6x) : (x2 – 2)



Xem thêm tại: http://loigiaihay.com/bai-67-trang-31-sgk-toan-8-tap-1-c43a4815.html#ixzz4ensEy1dY

4 tháng 9 2023

a,A(\(x\)) = 13\(x^4\) + 3\(x^2\) + 15\(x\) - 8\(x\) - 7 - 7\(x\) + 7\(x^2\) - 10\(x^4\)

A(\(x\)) = (13\(x^4\) - 10\(x^4\)) + (3\(x^2\) + 7\(x^2\)) + (15\(x\) - 8\(x\) - 7\(x\)) - 7

A(\(x\)) = 3\(x^4\) + 10\(x^2\) + 0 - 7

A(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7

B(\(x\)) = -4\(x^4\) - 10\(x^2\) + 10 + 5\(x^4\) - 3\(x\) - 18 + 30 - 5\(x^2\)

B(\(x\)) = (-4\(x^4\) + 5\(x^4\)) - (10\(x^2\) + 5\(x^2\)) - 3\(x\) + (10 + 30 - 18)

B(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\)  + 22

b,C(\(x\)) = A(\(x\)) + B(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7 + \(x^4\) - 15\(x^2\) - 3\(x\) + 22

C(\(x\)) = 4\(x^4\)  - (15\(x^2\) - 10\(x^2\)) - 3\(x\) + 22

C(\(x\)) = 4\(x^4\) - 5\(x^2\) - 3\(x\) + 15

c, D(\(x\)) = B(\(x\)) - A(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22 - 3\(x^4\) - 10\(x^2\) + 7

D(\(x\)) = (\(x^4\) - 3\(x^4\)) - (15\(x^2\) + 10\(x^2\)) + (22 + 7)

D(\(x\)) = - 2\(x^4\) - 25\(x^2\) + 29

d, Thay \(x\) = 1 vào C(\(x\)) ta có: C(1) = 4.14 - 5.12 -3.1 + 15 = 11 (xem lại đề bài em nhá)

 

a: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)

\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)

\(=x^2-2x+3\)

b: \(=\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}=x^2-1\)

c: \(=\dfrac{2x^4-5x^3+2x^2+2x-1}{x^2-x-1}\)

\(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)

`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`

`= 3x^5 - 4x^2 - 7x + 2`

`b)`

`A(x)+B(x)`

`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)

`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`

`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`

`= -4x - 5`

`b)`

`A(x) - B(x)`

`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`

`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`

`= 6x^5 - 8x^2 - 10x + 9`

`c)`

Thay `x=-1` vào đa thức `A(x)`

` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`

`= 3*(-1) - 4*1 + 7 + 2`

`= -3 - 4 + 7 + 2`

`= -7+7 + 2`

`= 2`

Bạn xem lại đề ;-;.

`2,`

`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)

`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`

`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`

`= 6x^2 - x - 2 - (6x^2 - x - 1)`

`= 6x^2 - x - 2 - 6x^2 + x + 1`

`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`

`= -1`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

2:

M=6x^2+3x-4x-2-6x^2+3x-2x+1

=-1

1;

a: A(x)=3x^5-4x^2-7x+2

b: B(x)=-3x^5+4x^2+3x-7

B(x)+A(x)

=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7

=-4x-5

A(x)-B(x)

=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7

=-6x^5-8x^2-10x+9

 

Ta có: \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(=9x^4+2x^2-x+5\)

Ta có: \(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2-3x-1\)

\(=-x^4-x^3-2x^2-2x-1\)

Ta có: P(x)+Q(x)

\(=9x^4+2x^2-x+5-x^4-x^3-2x^2-2x-1\)

\(=8x^4-x^3-3x+4\)

Ta có: P(x)-Q(x)

\(=9x^4+2x^2-x+5+x^4+x^3+2x^2+2x+1\)

\(=10x^4+x^3+4x^2+x+6\)