Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt bậc 2 có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow\left(m^2-4\right)m< 0\)
\(\Leftrightarrow m\in\left(-\infty;-2\right)\cup\left(0;2\right)\)
Câu 5:
\(\Leftrightarrow-x^2+7x-9+2x-9=0\)
\(\Leftrightarrow x^2-9x+18=0\)
=>x=3
=>Chọn A
Câu 2 : C
Câu 3 : A
Câu 4 : C
Câu 5 : C
Câu 6 : B
Câu 7 : C
Câu 8 : D
Câu 9 : B
Câu 2: C
Pt\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2+5x-2=\left(x-2\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\9x=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x=\dfrac{6}{9}\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Câu 3: A
\(\Delta:3x+4y-11=0\)
\(d_{\left(M;\Delta\right)}=\dfrac{\left|3.1+4.-1-11\right|}{\sqrt{3^2+4^2}}=\dfrac{12}{5}\)
Câu 4: Ko có đ/a
Do \(\dfrac{\pi}{2}< \alpha< \pi\Rightarrow tan\alpha< 0;cot\alpha< 0;cos\alpha< 0\)
\(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\)\(\Rightarrow cot\alpha=\dfrac{-\sqrt{21}}{2}\)
Câu 5:C
Câu 6:B
Câu 7: A
Có nghiệm khi \(\left(m;+\infty\right)\cup\left[-2;2\right]\ne\varnothing\)
\(\Leftrightarrow m< 2\)
Câu 8:D
Câu 9: B
\(cos2\alpha=2cos^2\alpha-1=-\dfrac{23}{25}\)
Câu 10:D
\(b,\) \(\sqrt{x^2-x-2}\) \(< x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x-2\ge0\\x-1>0\\x^2-x-2< x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)\ge0\\x>1\\x< 3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le-1\\x>1\\x< 3\end{matrix}\right.\) \(\Rightarrow2\le x>3\)
hãy bình tinh vào đừng có cuống lên thì lại làm sai
\(x^2-6x+1>\left(2x-3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow\left(x^2+1-9\right)-3\left(2x-3\right)-\left(2x-3\right)\sqrt{x^2+1}>0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}-3\right)\left(\sqrt{x^2+1}+3\right)-\left(2x-3\right)\left(\sqrt{x^2+1}+3\right)>0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+3\right)\left(\sqrt{x^2+1}-3-\left(2x-3\right)\right)>0\)
\(\Leftrightarrow\sqrt{x^2+1}-2x>0\) (do \(\sqrt{x^2+1}+3>0\) với mọi x)
\(\Leftrightarrow\sqrt{x^2+1}>2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le0\\\left\{{}\begin{matrix}x>0\\x^2+1>4x^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le0\\\left\{{}\begin{matrix}x>0\\-\dfrac{\sqrt{3}}{3}< x< \dfrac{\sqrt{3}}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x< \dfrac{\sqrt{3}}{3}\)
Con ko hiểu ngay chỗ khoanh tròn đỏ ạ. Sao thầy ghi là x<=0 , x>0 mà công thức là x<0, x>=0
thầy phynit xem lại đi ạ
Tham quá đấy ='=