K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(b,\) \(\sqrt{x^2-x-2}\) \(< x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x-2\ge0\\x-1>0\\x^2-x-2< x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)\ge0\\x>1\\x< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le-1\\x>1\\x< 3\end{matrix}\right.\) \(\Rightarrow2\le x>3\)

9 tháng 5 2022

thank

4 tháng 4 2021

câu 2 b

gọi tgian tổ 1 và tổ 2 làm xong công việc lần lượt là x và y (giờ, x;y>0)

Một giờ tổ 1 làm được: \(\frac{1}{x}\)(công việc)

Một giờ tổ 2 làm được: \(\frac{1}{y}\)(công việc)

Một giờ hai tổ làm được: \(\frac{1}{12}\)(công việc) nên ta có phương trình:

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)(1)

Nếu tổ 1 làm trong 2 giờ, tổ hai làm trong 7 giờ thì hai tổ làm xog công việc nên ta có pt:

\(\frac{2}{x}+\frac{7}{y}=1\)(2)

Từ (1) và (2),  ta co hệ phương trình:

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{2}{x}+\frac{7}{y}=1\end{cases}}\)(tự giải ra nha)

............ vậy...........

~hoctot~

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Lời giải:
ĐK: \(x\geq \frac{-4}{3}\)

BPT \(\Leftrightarrow x^2+6x+13-2\sqrt{3x+4}-3\sqrt{5x+9}\leq 0\)

\(\Leftrightarrow x^2+x+2(x+2-\sqrt{3x+4})+3(x+3-\sqrt{5x+9})\leq 0\)

\(\Leftrightarrow x(x+1)+2.\frac{(x+2)^2-(3x+4)}{x+2+\sqrt{3x+4}}+3.\frac{(x+3)^2-(5x+9)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)+\frac{2x(x+1)}{x+2+\sqrt{3x+4}}+\frac{3x(x+1)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)\left[1+\frac{2}{x+2+\sqrt{3x+4}}+\frac{3}{x+3+\sqrt{5x+9}}\right]\leq 0\)

\(\Leftrightarrow x(x+1)\leq 0\)

\(\Leftrightarrow -1\leq x\leq 0\)

Kết hợp với ĐKXĐ suy ra nghiệm của BPT là tất cả các số thực thuộc đoạn \([-1;0]\)

12 tháng 3 2019

Trình bày đẹp :v công thức ko bung biêng

15 tháng 8 2018

b , \(\sqrt{1-4x+4x^2}-3=0\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=3\)

\(\Leftrightarrow\left|1-2x\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=2\\-2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy nghiệm của phương trình là \(S=\left\{-1,2\right\}\)

17 tháng 3 2020

\(\left(x-2\right)\left(x^2-5x+4\right)=\left(x-2\right)\left(x^2-4x-x+4\right)=\left(x-2\right)\left(x-4\right)\left(x-1\right)< 0\)

khi đó có số số lẻ số <0

\(+,1\text{ số bé hơn 0}\Rightarrow x-4< 0;x-2>0\Leftrightarrow2< x< 4\)

\(+,3\text{ số bé hơn 0}\Rightarrow x-4< 0\Leftrightarrow x< 4\)

vậy 2<x<4 hoặc x<4

17 tháng 3 2020

TH1, x-2>0          ->x>2 (1)                           từ (1), (2) -> x>2  (*)

        x^2-5x+4<0   ->x(x-5)< -4 (2)

TH2, x-2<0 -> x<2  (3)                                                  Từ (3), (4) -> 2<x<5 -> x thuộc { 3;4} (**)

        x^2-5x+4 > 0 -> x(x-5) > -4  -> x> 5  (4)

                                                              Từ (*); (**) -> x>2

27 tháng 1 2020

TH1: 3x-2>7. ĐK:\(x\ge\frac{2}{3}\)

<=>x>3(thỏa)

TH2: 3x-2<7. Đk: x<2/3

<=>x<3. kh đk => x<2/3

kl:...

23 tháng 12 2018

câu b bạn chỉ cần cộng 2 vế cho 2 rùi bạn đặt x2-3x+2=t là giải ra

23 tháng 12 2018

câu a thì 2 trị tuyệt đối cộng lại bằng 0 thì chỉ xảy ra khi x+y=0 và 2x-y+3=0. hệ pt 2 ẩn là ra

19 tháng 3 2020

\(\hept{\begin{cases}ay+bx=c\\cx+az=b\\bz+cy=a\end{cases}}\)<=> \(\hept{\begin{cases}cay+cbx=c^2\\bcx+abz=b^2\\bz+cy=a\end{cases}}\)<=> \(\hept{\begin{cases}ay+bx=c\left(1\right)\\cay-abz=c^2-b^2\left(2\right)\\bz+cy=a\left(3\right)\end{cases}}\)

hệ gồm (2) và (3)  là hậ phương trình bậc nhất hai ẩn cơ bản . Em làm tiếp