Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (-50) + (-49) + (-48) +..... + 49 + 50 + 51 + 52
S = [(-50)+50] + [(-49)+49]+........+[(-1)+1] + 0 + 51 + 52
S = 0+ 0 +.... + 0 + 51 + 52 = 51 + 52
S = 103
Bài 1:
Ta có:
\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\)
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{49}{1}\)
\(\Rightarrow\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{49}{1}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+...+\left(1+\dfrac{48}{2}\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)
Bài 2:
Ta có:
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)
\(=\dfrac{1}{5}+\left(\dfrac{1}{9}+\dfrac{1}{10}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}\right)\)
Nhận xét:
\(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Vậy \(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{2}\)
Gọi phân số đó là \(\frac{a}{b}\). Ta có
(a+7)/(b+7)=3 => a+7=3(b+7) = 3b+21 => a = 3b+14.
Thay a = 3b + 14 vào phân số \(\frac{a}{b}\) được :
(3b+14)/b=a/b => 3b+14-b=50 =>3b+14=50+b.
3b=36+b =>2b=36. Suy ra b=18 và a=50+18=68.
Phân số phải tìm là \(\frac{68}{18}\)
b: \(A=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2003}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{2}{2003}\)
\(=2\left(\dfrac{1}{360}+\dfrac{1}{2003}\right)\)
\(B=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}\right)+\dfrac{5}{2003}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2003}\)
\(=5\left(\dfrac{1}{320}+\dfrac{1}{2003}\right)\)
Vì 1/360+1/2003<1/320+1/2003
nên A<B
`(s:48)-(s:50)=20`
`<=>s/48-s/50=20`
`<=>(25s)/1200-(24s)/1200=20`
`<=>s/1200=20`
`<=>s=24000`
Vậy `s=24000`
\(\dfrac{S}{48}-\dfrac{S}{50}=20\)
\(\Leftrightarrow\dfrac{50S-48S}{48\cdot50}=20\)
\(\Leftrightarrow2S=48\cdot50\cdot20=48000\)
\(\Leftrightarrow S=24000\)