Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
S = \(2+2^2+2^3+...+2^{100}\)
2S = \(2^2+2^3+...+2^{101}\)
2S - S = \(2^{101}-1\)
S = \(2^{101}-1\)
Vì \(101\) chia \(4\) dư \(1\) có dạng \(4k+1\) nên \(2^{101}\)có tận cùng là \(2\) . Mà S = \(2^{101}-1\)nên S có tận cùng là \(1\)
S = \(2+2^2+2^3+...+2^{100}\)
S = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
S = \(2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
S = \(3.5.\left(2+2^5+...+2^{97}\right)\)chia hết cho \(3\) và\(5\)
bạn trả lời giúp mình câu hỏi này với , mình đang rất gấp , đè bài y như thế này
ta co: S=1+3+32+33+...+348+349
S=(1+3)+(32+33)+...+(348+349)
S=4+32.(1+3)+...+348.(1+3)
S=4+4.(32+...+348)
Vi 4 chia het cho 4
=>S chia het cho 4
a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6
b) Tương tự a
c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0
Nhớ ticks đúng cho mình nhé
a) S = 2 + 22 + 23 + 24 + .... + 2100
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )
= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )
= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )
= 6 + 22 . 6 + .... + 298 . 6
= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )
S=21+22+23+...+2100
a) S=21+22+23+...+2100
=(21+22)+(23+24)+...+(299+2100)
=2(1+2)+22(1+2)+...+298(1+2)
=2.3+22.3+...298.3
Vì mỗi thừa số trong S chia hết cho 3=> S chia hết cho 3
a, \(S="2+2^2"+"2^3+2^4"+....+"2^{99}+2^{100}"\)
\(S=6+2^2."2+2^2"+2^{98}."2+2^2"\)chia hết cho 6
b, tương tự
c, S chia hết cho 5 vì chia hết cho 15
S cũng chia hết cho 2 và 5 mọi số hạng của S đều chi hết cho 2
Suy ra S chia hết cho 2 và 5
Suy ra S có tận cùng là 10
P/s: Phần a bn thay dấu ngoặc kép thành ngoặc đơn nhé
a) S= 2 + 22 + 23 +...+ 2100
S= ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
S= 6+ 22 ( 2+22)+ ...+ 298 (2+22)
S=6+ 22.6+ ...+ 298.6
S= 6.(22+...+298) chia hết cho 3 ( vì 6 chia hết cho 3)
a) \(S=2+2^2+2^3+...+2^{100}\)
Ta có : \(2S=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2S-S=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow2S-S=\left(2^2+2^3+2^4+...+2^{100}\right)+2^{101}-2-\left(2^2+2^3+2^4+...+2^{100}\right)\)
\(\Rightarrow S=2^{101}-2\)
Vậy \(S=2^{101}-2\)
S=2+22+23+....+2100
2.S=2+(22+23+...+299+2100)
2.S=22+23+24+...+2100+2101
-S=2+22+23+24+...+2100
2.S-S=2101-2
S=2100
Lưu Ý:Những chữ số mình viết thẳng hàng hay như thế nào thì bạn trình bày y như thế mới đúng ,kể cả gạch dài nha!