K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018.2019}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)

( gạch bỏ các phân số giống nhau)

\(S=1-\frac{1}{2019}\)

\(S=\frac{2018}{2019}\)

CHÚC BN HỌC TỐT!!!!

5 tháng 4 2018

S=1/1.2+1/2.3+1/3.4+............1/2017.2018+1/2018.2019

S=1/2.(1+1/3.2+1/3.2+.............1/2017.1009+1/1009.2019)

S=1/4.(2+2/3.2+2/3.2+..............2/2017.1009+2/1009.2019)

S=1/4.(1-1/2+1/2-1/3+1/3+..........+1/1009-1/1009+1/2019)

S=1/4.(1-1/2019)

S=1/4.2018/2019=1009/4038

3 tháng 4 2018

Bài làm của bạn đây nhéHỏi đáp Toán

3 tháng 4 2018

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}+\dfrac{1}{2018.2019}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}\\ =1-\dfrac{1}{2019}\\ =\dfrac{2019-1}{2019}=\dfrac{2018}{2019}\)

15 tháng 4 2019

gọi biểu thức trên là A                                                                                                                                                                                          A=1/1 -1/2+1/3-1/4+...+1/2017-12018+1/2018-1/2019                                                                                                                                        A=1/1-1/2019                                                                                                                                                                                                       A=2018/2019

15 tháng 4 2019

1/1.2+1/2.3+1/3.4+1/4.5+...+1/2017.2018+1/2018.2019

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2019}{2019}-\frac{1}{2019}\)

\(=\frac{2018}{2019}\)

5 tháng 4 2018

(1.2 + 2.3 + 3.4 + ... + 2018.2019) - (12 + 22 + ... + 20182)

= (1.2 + 2.3 + ... + 2018.2019) - (1.1 + 2.2 + ... + 2018.2018)

= (1.2 + 2.3 + ... + 2018.2019) - [1.(2 - 1) + 2.(3 - 1) + ... + 2018.(2019 - 1)]

= (1.2 + 2.3 + ... + 2018.2019) - (1.2 + 2.3 + ... + 2018.2019 - 1 - 2 - 3 - ... - 2018)

= (1.2 + 2.3 + ... + 2018.2019) - [1.2 + 2.3 + ... + 2018.2019 - (1 + 2 + ... + 2018)]

= (1.2 + 2.3 + ... + 2018.2019) - (1.2 + 2.3 + ... + 2018.2019) + (1 + 2 + 3 + ... + 2018)

= 1 + 2 + ... + 2018 (có : (2018 - 1) : 1 + 1 = 2018 (số))

= (2018 + 1).2018 : 2

= 2037171

5 tháng 4 2018

cảm ơn nhé

19 tháng 6 2020

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018+2019}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

=\(1-\frac{1}{2019}< 1\)

19 tháng 6 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(A=\frac{1}{1}-\frac{1}{2019}< 1\)

Vậy \(A< 1\)

8 tháng 4 2018

Ta có : 

\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1.2+2.3+3.4+...+2017.2018}\)

\(A=\frac{\frac{2}{2}+\frac{2\left(2+1\right)}{2}+\frac{3\left(3+1\right)}{2}+...+\frac{2017\left(2017+1\right)}{2}}{1.2+2.3+3.4+...+2017.2018}\)

\(A=\frac{\frac{2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)

\(A=\frac{\frac{1.2+2.3+3.4+...+2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)

\(A=\frac{1.2+2.3+3.4+...+2017.2018}{2}.\frac{1}{1.2+2.3+3.4+...+2017.2018}\)

\(A=\frac{1}{2}\)

Vậy \(A=\frac{1}{2}\)

Chúc bạn học tốt ~ 

8 tháng 4 2018

Cảm ơn PMQ nhiều nha cậu cứu mình rồi

10 tháng 4 2019

à không, tính hoy nha

10 tháng 4 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2018}{2019}\)

~Học tốt~

27 tháng 8 2017

a) = 1-1/2+1/2-1/3+1/3-1/4

    = 1-1/4=3/4

b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018

   =1-1/2018=2017/2018

c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015

   = 1/2-1/2015=2015/4030-2/4030=2013/4030

27 tháng 8 2017

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)

\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)

\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}.\frac{2013}{4030}\)

\(=\frac{6039}{8060}\)

27 tháng 2 2018

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2017\cdot2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

b) \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)( sửa 91.99 thành 97.99 mới đúng nha )

\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{99}\right)\)

\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{99}\right)\)

\(=\frac{1}{2}.\frac{64}{99}\)

\(=\frac{32}{99}\)

27 tháng 2 2018

a) 1/1.2 + 1/2.3 + 1/3.4 +...+1/2017.2018

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ....+1/2017 - 1/2018

= 1 - 1/2018 

= 2017/2018