Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{3^{10}.\left(-5\right).\left(-5\right)^{20}}{\left(-5\right)^{20}.3^{10}.3^2}\)\(=\frac{-5}{3^2}\)
b,\(\frac{-11^5.13^7}{11^5.13^8}=\frac{-11^5.13^7}{\left(-11\right)^5.\left(-1\right)^5.13^7.13}\)\(=\frac{1}{-1^5.13}\)
\(\frac{3^{10}.\left(-5\right)^{21}}{\cdot\left(-5\right)^{20}.3^{12}}=\frac{\left(-5\right)}{3^2}=\frac{-5}{9}\)
\(\frac{\left(-11\right)^5.13^7}{11^5.13^8}=\frac{-1}{13}\)
\(\dfrac{-11^5.13^7}{11^5.13^8}=\dfrac{-1.11^5.13^7}{11^5.13^8}=-\dfrac{1}{13}\)
Ta có:\(\frac{8^2}{7.9}.\frac{9^2}{8.10}.\frac{10^2}{9.11}...\frac{14^2}{13.15}=\frac{8^2.9^2.....14^2}{7.9.8.10.9.11....13.15}\)
\(=\)\(\frac{\left(8.9.10...14\right)\left(8.9.10...14\right)}{\left(7.8.9...13\right).\left(9.10.11...15\right)}\)
\(=\frac{14.8}{7.15}=\frac{2.7.8}{7.15}=\frac{2.8}{15}=\frac{16}{15}\)
\(\frac{8^2}{7.9}.\frac{9^2}{8.10}.\frac{10^2}{9.11}.\frac{11^2}{10.12}.\frac{12^2}{11.13}.\frac{13^2}{12.14}.\frac{14^2}{13.15}\)
\(\frac{8^2.9^2.10^2.11^2.12^2.13^2.14^2}{7.9.8.10.9.11.10.12.11.13.12.14.13.15}\)
\(\frac{8.9.10.11.12.13.14}{7.9.10.11.12.13.15}=\frac{8.14}{7.15}=\frac{112}{105}=\frac{16}{15}\)
Học tốt@_@
\(\frac{5^{11}.7^{12}.5^{11}.7^{11}}{5^{12}.7^{12}.9.5^{11}.7^{11}}\)=\(\frac{1}{45}\)
\(\frac{-11\cdot13^7}{11^{15}\cdot13^8}=\frac{-1\cdot13}{11^{14}\cdot13^7}\)
Bài giải
\(\frac{-11\cdot13^7}{11^{15}\cdot13^8}=\frac{-1}{11^{14}\cdot13}\)