Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : x khác -1 và 1
A = [x^3+1-(x^2-1).(x+1)/(x-1).(x+1)] : [x.(x-1)+x/x-1]
= [-x^2+x/(x-1).(x+1)] : x^2/x-1
= -x.(x-1)/(x-1).(x+1) . (x-1)/x^2
= -(x-1)/x.(x+1)
k mk nha
a/\(\frac{10x}{5x^2}=\frac{2}{x}\)
b/\(\frac{x\left(x^2-y^2\right)}{x^2\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}=\frac{x-y}{x}\)
\(Q=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(\Leftrightarrow\) \(Q=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(2-x\right)}+\frac{5}{\left(x+3\right)\left(2-x\right)}+\frac{-1}{\left(x+3\right)\left(2-x\right)}\)
\(\Rightarrow\) \(Q=\left(x-2\right)\left(x+2\right)+5-1\)
\(\Leftrightarrow\) \(Q=x^2-4+5-1\)
\(\Leftrightarrow\) \(Q=x^2\)
Thay \(Q=\frac{-3}{4}\) ta được:
\(x^2=\frac{-3}{4}\)
Vì \(\frac{-3}{4}>0\forall x\)
\(\Rightarrow\) Pt vô nghiệm
Vậy không có giả trị nào của x thỏa mãn \(Q=\frac{-3}{4}\)
Chúc bn học tốt!!
Công thức tổng quát:
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Do đó:
\(A=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x-4}+\frac{1}{\left(x-1\right)\left(x+10\right)}\)
Bạn tự làm tiếp nhé.
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
\(=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)
\(=-\frac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}\)
\(=-\frac{x+y}{\left(x-y\right)^2}\)