K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(M=\dfrac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)

\(=\dfrac{n^3+n^2+n^2+n-n-1}{\left(n+1\right).\left(n^2-n+1\right)+2n.\left(n+1\right)}\)

\(=\dfrac{n^2\left(n+1\right)+n\left(n-1\right)-\left(n+1\right)}{\left(n+1\right).\left(n^2-n+1+2n\right)}\)

\(=\dfrac{\left(n+1\right).\left(n^2+n-1\right)}{\left(n+1\right).\left(n^2+n+1\right)}\)

\(=\dfrac{n^2+n-1}{n^2+n+1}\)

22 tháng 7 2018

hàng thứ 3 là dấu + không phải dây - nha

4 tháng 4 2016

\(P=\sqrt{\left(10^n+1\right)^2-2.10^n+\left(\frac{10^n}{10^n+1}\right)^2}+\frac{10^n}{10^n+1}\)

\(=\sqrt{\left(10^n+1-\frac{10^n}{10^n+1}\right)^2}+\frac{10^n}{10^n+1}\)

\(=10^n+1-\frac{10^n}{10^n+1}+\frac{10^n}{10^n+1}\left(\text{vì }10^n+1-\frac{10^n}{10^n+1}>0\text{ }\right)\)

\(=10^n+1\)

4 tháng 4 2016

cut cho

6 tháng 1 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b\right)\left(\dfrac{x^4}{a}+\dfrac{y^4}{b}\right)\ge\left(x^2+y^2\right)^2=1\)

\(\Rightarrow VT=\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{1}{a+b}=VP\)

Dấu "=" khi \(\dfrac{x^2}{a}=\dfrac{y^2}{b}\)\(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\Rightarrow a+b=\dfrac{a}{x^2}\Rightarrow\left(a+b\right)^n=\dfrac{a^n}{x^{2n}}\)

Xét \(VT\) của biểu thức cần c.m:

\(VT=\left(\dfrac{x^2}{a}\right)^n+\left(\dfrac{y^2}{b}\right)^n=2\cdot\dfrac{x^{2n}}{a^n}\)

\(VP=\dfrac{2}{\left(a+b\right)^n}=\dfrac{2}{\dfrac{a^n}{x^{2n}}}=2\cdot\dfrac{x^{2n}}{a^n}\)

Vậy có ĐPCM

15 tháng 10 2017

\(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}......\dfrac{2n-1}{2n}=\dfrac{1.2.3.....\left(2n-1\right)}{2.3.4.....2n}=\dfrac{1}{2n}\)

Khi đó ta có điều cần chứng minh:

\(\dfrac{1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(n>\dfrac{1}{3}\right)\)

Hay

\(\dfrac{\sqrt{3n+1}}{2n\left(\sqrt{3n+1}\right)}\le\dfrac{2n}{2n\left(\sqrt{3n+1}\right)}\)

Hay \(\sqrt{3n+1}\le2n\)(luôn đúng)

14 tháng 7 2017

by AM-GM: \(\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+n+1}\le\dfrac{1}{2}\left(\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\right)=\dfrac{1}{2}.\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

20 tháng 9 2018

quên -3 ở dười mẫu nha