Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(x=\left(1+\frac{10+\sqrt{10}}{1+\sqrt{10}}\right)\left(\frac{10-\sqrt{10}}{\sqrt{10}-1}-1\right)\)
\(x=\left(1+\frac{\sqrt{10}\left(\sqrt{10}+1\right)}{1+\sqrt{10}}\right)\left(\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}-1\right)\)
\(x=\left(1+\sqrt{10}\right)\left(\sqrt{10}-1\right)\)
\(x=10-1=9\)
Thay \(x=9\) vào A:
\(A=\frac{2\sqrt{9}+1}{9+\sqrt{9}}=\frac{7}{12}\)
Vậy với \(x=\left(1+\frac{10+\sqrt{10}}{1+\sqrt{10}}\right)\left(\frac{10-\sqrt{10}}{\sqrt{10}-1}-1\right)\Leftrightarrow A=\frac{7}{12}\)
2/ \(B=\left(1-\frac{2\sqrt{x}}{3\sqrt{x}+1}+\frac{\sqrt{x}+1}{9x-1}\right):\frac{3}{3\sqrt{x}+1}\)
\(\Leftrightarrow B=\frac{9x-1-2\sqrt{x}\left(3\sqrt{x}-1\right)+\sqrt{x}+1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\frac{3\sqrt{x}+1}{3}\)
\(\Leftrightarrow B=\frac{9x-1-6x+2\sqrt{x}+\sqrt{x}+1}{3\left(3\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
3/ \(P=A.B=\frac{2\sqrt{x}+1}{x+\sqrt{x}}\cdot\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{2\sqrt{x}+1}{3\sqrt{x}-1}\)
Để \(P\in Z\Leftrightarrow2\sqrt{x}+1⋮3\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+2⋮3\sqrt{x}-1\)
\(\Leftrightarrow2\left(3\sqrt{x}-1\right)+4⋮3\sqrt{x}-1\)
\(\Leftrightarrow4⋮3\sqrt{x}-1\)
\(\Leftrightarrow3\sqrt{x}-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow3\sqrt{x}\in\left\{0;2;-1;3;-3;5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;\frac{2}{3};-\frac{1}{3};1;-1;\frac{5}{3}\right\}\)
\(\Leftrightarrow x\in\left\{0;\frac{4}{9};\frac{1}{9};1;\frac{25}{9}\right\}\)
Loại bỏ những giá trị x < 0 , x \(x\notin Z\)và x không thỏa mãn ĐKXĐ
Vậy để \(P\in Z\Leftrightarrow x\in\left\{1\right\}\)
G = \(\sqrt{6}-2+5-\sqrt{6}+2^3=3+8=11\)
F= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2^5\right)^2}\)=\(2+\sqrt{3}-\sqrt{3}+1+2^5=3+32=35\)
H = \(\sqrt{6}-\frac{4\left(\sqrt{10}+\sqrt{6}\right)}{10-6}+\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\)=\(\sqrt{6}-\sqrt{10}-\sqrt{6}+\sqrt{10}=0;\)
\(K=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\left(\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\left(\sqrt{a}-1\right)\)
\(=\frac{a-1}{\sqrt{a}}\Rightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\Rightarrow m^2+n^2=2\)
\(A=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\Rightarrow\left\{{}\begin{matrix}m=0\\n=-2\end{matrix}\right.\Rightarrow m-n=2\)
\(P=\sqrt{\left(10^n+1\right)^2-2.10^n+\left(\frac{10^n}{10^n+1}\right)^2}+\frac{10^n}{10^n+1}\)
\(=\sqrt{\left(10^n+1-\frac{10^n}{10^n+1}\right)^2}+\frac{10^n}{10^n+1}\)
\(=10^n+1-\frac{10^n}{10^n+1}+\frac{10^n}{10^n+1}\left(\text{vì }10^n+1-\frac{10^n}{10^n+1}>0\text{ }\right)\)
\(=10^n+1\)
cut cho