Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right)\):\(\frac{a^2+1}{a^2-9}\)
=\(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right]\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\left[\frac{\left(3a+1\right)\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)}+\frac{\left(3a-1\right)\left(a-3\right)}{a\left(a+3\right)\left(a-3\right)}\right]\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{3a^2+9a+a+3+3a^2-9a-a+3}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{6\left(a^2+1\right)}{a\left(a-3\right)\left(a+3\right)}\).\(\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
=\(\frac{6}{a}\)
\(=\left(\dfrac{2a+1}{2\left(a+2\right)}-\dfrac{a}{3\left(a-2\right)}-\dfrac{2a^2}{3\left(a-2\right)\left(a+2\right)}\right):\dfrac{13a+6}{24-12a}\)
\(=\dfrac{3\left(2a+1\right)\left(a-2\right)-2a\left(a+2\right)-4a^2}{6\left(a-2\right)\left(a+2\right)}:\dfrac{13a+6}{-12\left(a-2\right)}\)
\(=\dfrac{3\left(2a^2-3a-2\right)-2a\left(a+2\right)-4a^2}{6\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-12\left(a-2\right)}{13a+6}\)
\(=\dfrac{6a^2-9a-6-2a^2-4a-4a^2}{a+2}\cdot\dfrac{-2}{13a+6}\)
\(=\dfrac{-\left(13a+6\right)}{a+2}\cdot\dfrac{-2}{13a+6}=\dfrac{2}{a+2}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{399}{400}\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{19.21}{20.20}\Rightarrow\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\) \(\Rightarrow A=\frac{1}{20}.\frac{21}{2}=\frac{21}{40}\)
\(=\dfrac{a+x+1}{a+x}:\dfrac{a+x-1}{a+x}\cdot\left(\dfrac{2ax-1+a^2+x^2}{2ax}\right)\)
\(=\dfrac{a+x+1}{a+x-1}\cdot\dfrac{\left(a+x\right)^2-1}{2ax}\)
\(=\dfrac{a+x+1}{a+x-1}\cdot\dfrac{\left(a+x+1\right)\left(a+x-1\right)}{2ax}\)
\(=\dfrac{\left(a+x+1\right)^2}{2ax}\)
A= \(\frac{1,11+0,19-1,3.2}{2,06+0,54}-\left(\frac{1}{2}+\frac{1}{3}\right):2=\frac{-\frac{131}{100}}{\frac{13}{5}}-\frac{5}{6}:2\)
=\(-\frac{131}{260}-\frac{5}{12}=-\frac{359}{390}\)
B= \(\left(5\frac{7}{8}-2\frac{1}{4}-0,5\right):2\frac{23}{26}=\left(\frac{47}{8}-\frac{9}{4}-\frac{1}{2}\right):\frac{75}{26}=\frac{25}{8}.\frac{26}{75}=\frac{13}{12}\)
b) ta có : A=\(-\frac{359}{390}\approx-0,9\)
B= \(\frac{13}{12}\approx1,08\)
=> A<x<B mà x nguyên => x=0 hoặc x=1
Đặt \(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)
Ta có:\(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\frac{a}{a+1}-\frac{a^2}{1+a^2}.\frac{1}{a^2+a}\)
\(A=\frac{a^2}{a^2-1}-\frac{a^3}{a+a^3+a^2+1}-\frac{a^2}{a+a^2+a^3+a^4}\)
\(\left(\frac{3a}{a^2-4}+\frac{1}{2-a}-\frac{2}{a+2}\right):\left(1-\frac{a^2+4}{a^2-4}\right)\)điều kiện : a khác {-2,2}
=\(\left(\frac{3a}{a^2-4}-\frac{a+2}{a^2-4}-\frac{2a-4}{a^2-4}\right):\left(-\frac{8}{a^2-4}\right)\)
=\(\left(\frac{3a-a-2-2a+4}{a^2-4}\right).\left(\frac{a^2-4}{-8}\right)\)
=\(-\frac{1}{4}\)
\(=\left[\frac{3a}{\left(a-2\right)\left(a+2\right)}-\frac{1}{\left(a-2\right)}-\frac{2}{\left(a+2\right)}\right]:\left(\frac{a^2-4-a^2-4}{a^2-4}\right)=\left(\frac{3a-a-2-2a+4}{\left(a-2\right)\left(a+2\right)}\right).\frac{\left(a-2\right)\left(a+2\right)}{-8}=\frac{2}{\left(a-2\right)\left(a+2\right)}.\frac{\left(a-2\right)\left(a+2\right)}{-8}\)
\(=\frac{-1}{4}\)