Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{2a+1}{2\left(a+2\right)}-\dfrac{a}{3\left(a-2\right)}-\dfrac{2a^2}{3\left(a-2\right)\left(a+2\right)}\right):\dfrac{13a+6}{24-12a}\)
\(=\dfrac{3\left(2a+1\right)\left(a-2\right)-2a\left(a+2\right)-4a^2}{6\left(a-2\right)\left(a+2\right)}:\dfrac{13a+6}{-12\left(a-2\right)}\)
\(=\dfrac{3\left(2a^2-3a-2\right)-2a\left(a+2\right)-4a^2}{6\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-12\left(a-2\right)}{13a+6}\)
\(=\dfrac{6a^2-9a-6-2a^2-4a-4a^2}{a+2}\cdot\dfrac{-2}{13a+6}\)
\(=\dfrac{-\left(13a+6\right)}{a+2}\cdot\dfrac{-2}{13a+6}=\dfrac{2}{a+2}\)
\(\left(\frac{3a}{a^2-4}+\frac{1}{2-a}-\frac{2}{a+2}\right):\left(1-\frac{a^2+4}{a^2-4}\right)\)điều kiện : a khác {-2,2}
=\(\left(\frac{3a}{a^2-4}-\frac{a+2}{a^2-4}-\frac{2a-4}{a^2-4}\right):\left(-\frac{8}{a^2-4}\right)\)
=\(\left(\frac{3a-a-2-2a+4}{a^2-4}\right).\left(\frac{a^2-4}{-8}\right)\)
=\(-\frac{1}{4}\)
\(=\left[\frac{3a}{\left(a-2\right)\left(a+2\right)}-\frac{1}{\left(a-2\right)}-\frac{2}{\left(a+2\right)}\right]:\left(\frac{a^2-4-a^2-4}{a^2-4}\right)=\left(\frac{3a-a-2-2a+4}{\left(a-2\right)\left(a+2\right)}\right).\frac{\left(a-2\right)\left(a+2\right)}{-8}=\frac{2}{\left(a-2\right)\left(a+2\right)}.\frac{\left(a-2\right)\left(a+2\right)}{-8}\)
\(=\frac{-1}{4}\)
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
+ Từ \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow3a-2b=c\) và \(3a-c=2b\)
+ Tương tự ta cũng có \(3b-2c=a\) và \(3b-a=2c\)
Và \(3c-2a=b\); \(3c-b=2a\)
Thay vào P
\(P=\frac{c.a.b}{2.b.2.c.2.a}=\frac{1}{8}\)
a/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b/ \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
1)Xét \(VT=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)
Suy ra Đpcm
2)Xét \(VT=\frac{3\left(bk\right)^2+\left(dk\right)^2}{3b^2+d^2}=\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(1\right)\)
Xét \(VP=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)
Từ (1) và (2) suy ra Đpcm
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{399}{400}\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{19.21}{20.20}\Rightarrow\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\) \(\Rightarrow A=\frac{1}{20}.\frac{21}{2}=\frac{21}{40}\)
\(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right)\):\(\frac{a^2+1}{a^2-9}\)
=\(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right]\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\left[\frac{\left(3a+1\right)\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)}+\frac{\left(3a-1\right)\left(a-3\right)}{a\left(a+3\right)\left(a-3\right)}\right]\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{3a^2+9a+a+3+3a^2-9a-a+3}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)
=\(\frac{6\left(a^2+1\right)}{a\left(a-3\right)\left(a+3\right)}\).\(\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
=\(\frac{6}{a}\)