Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
quy đồng mẫu thức ta được
\(\frac{yz\left(z-y\right)+xz\left(x-z\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{yz\left(z-y\right)+xz\left(x-z\right)-xy\left[\left(z-y\right)+\left(x-z\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{y\left(z-y\right)\left(z-x\right)+x\left(x-z\right)\left(z-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(z-y\right)\left(z-x\right)\left(y-x\right)}{xyz\left(z-y\right)\left(z-x\right)\left(y-x\right)}=\frac{1}{xyz}\)