Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Với \(a>0;a\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)
b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)
\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)
Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)
\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}\right)^2-2\sqrt{a}+1}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)
Mà : \(\sqrt{a}-1< \sqrt{a}\Rightarrow\frac{\sqrt{a}-1}{\sqrt{a}}< 1\)
Vậy \(M< 1\)
ĐK: \(x\ge-7\)
PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)
\(\Leftrightarrow x=9\)
P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((
\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)
Kiểm tra đề lại nhé b. Sao rút gọn rồi mà còn phức tạp thế
a/ Để P có nghĩa thì
\(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)
b/ \(P=\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}:\frac{\sqrt{a}+2}{\sqrt{a}-1}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\)
\(=\frac{1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\)
\(=\frac{2\sqrt{a}+a-a+2\sqrt{a}-1-a\sqrt{a}-4a-4\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=-\frac{1+4a+a\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(a)\) \(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=a-b\)
\(b)\) \(B=a-b=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)\(\Rightarrow\)\(B^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)
\(B^2=4-2\sqrt{4-3}=4-2=2\)\(\Rightarrow\)\(B=\sqrt{2}\) ( vì \(B>0\) )
...
\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a-1}}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}\right)^2-2\sqrt{a}+1}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)
Mà \(\sqrt{a}-1< \sqrt{a}\) => \(\frac{\sqrt{a}-1}{\sqrt{a}}< 1\)
Vậy M < 1.