\(P=\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}:\frac{\sqrt{a}+2}{\sqrt{a}-1}-\frac{\sqrt{a}+2}{\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Kiểm tra đề lại nhé b. Sao rút gọn rồi mà còn phức tạp thế

19 tháng 12 2016

a/ Để P có nghĩa thì

\(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)

b/ \(P=\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}:\frac{\sqrt{a}+2}{\sqrt{a}-1}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\)

\(=\frac{1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\)

\(=\frac{2\sqrt{a}+a-a+2\sqrt{a}-1-a\sqrt{a}-4a-4\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

\(=-\frac{1+4a+a\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)

6 tháng 7 2016

\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a-1}}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}\right)^2-2\sqrt{a}+1}\)

\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)

Mà \(\sqrt{a}-1< \sqrt{a}\) => \(\frac{\sqrt{a}-1}{\sqrt{a}}< 1\)

Vậy M < 1.

31 tháng 7 2016

N=\(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right).\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)\)

ĐKXĐ \(\hept{\begin{cases}x-\sqrt{3x}+3\ne0\\3-x\ne0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-\sqrt{3x}+3\ne0\\x\ne3\\x\ge0\end{cases}}\)

\(=\left[\frac{\left(\sqrt{x}+\sqrt{3}\right)\left(x-\sqrt{3x}+3\right)}{x-\sqrt{3x}+3}-2\sqrt{x}\right].\frac{\sqrt{x}+\sqrt{3}}{3-x}\)

\(=\left(\sqrt{x}+\sqrt{3}-2\sqrt{x}\right).\frac{\sqrt{x}+\sqrt{3}}{3-x}\)

\(=\frac{x-2x+3}{3-x}=\frac{3-x}{3-x}=1\)

31 tháng 7 2016

câu 2 ra |a-b| nha bn mik đăng rồi nhưng bị lỗi nên nó ko hiện lên 

\(a)\) \(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=a-b\)

\(b)\) \(B=a-b=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)\(\Rightarrow\)\(B^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)

\(B^2=4-2\sqrt{4-3}=4-2=2\)\(\Rightarrow\)\(B=\sqrt{2}\) ( vì \(B>0\) ) 

... 

19 tháng 12 2018

cảm ơn nhe <3 :)) 

28 tháng 7 2019

\(T=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x-1}}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}\left(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x-1}\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\right)\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{x-1}\)

\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{2x+2}{x-1}\)

\(\Rightarrow T=\frac{2x+2}{\sqrt{x}}\)

28 tháng 7 2019

\(T=8\Leftrightarrow\frac{2x+2}{\sqrt{x}}=8\)

\(\Leftrightarrow x+1=4\sqrt{x}\)

\(\Leftrightarrow x^2+2x+1=8x\)

\(\Leftrightarrow x^2-6x+1=0\)

\(\Delta=\left(-6\right)^2-4.1.1=36-4=32,\sqrt{\Delta}=\sqrt{32}\)

Vậy pt có 2 nghiệm phân biệt x1; x2

\(x_1=\frac{6+\sqrt{32}}{2}=3+\sqrt{8}\);\(x_2=\frac{6-\sqrt{32}}{2}=3-\sqrt{8}\)

13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((