Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\sqrt{2}+1\)
\(A=\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}\Rightarrow A^2=2\sqrt{7}-4\)
bt tek thôi,,,dợi xíu típ nha
\(\sqrt{2}\)D = \(\sqrt{4-2\sqrt{3}}\)- \(\sqrt{4+2\sqrt{3}}\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\)- \(\sqrt{\left(\sqrt{3}+1\right)^2}\)= \(\sqrt{3}\)- 1 - \(\sqrt{3}\)-1 = -2
<=> D = -\(\sqrt{2}\)
\(\sqrt{3+\frac{\sqrt{13}+1}{2}}=\sqrt{\frac{7+\sqrt{13}}{2}}=\sqrt{\frac{14+2\sqrt{13}}{4}}=\sqrt{\left(\frac{\sqrt{13}+1}{2}\right)^2}\)
=\(\frac{\sqrt{13}+1}{2}\)
cứ như thế ta có kết quả là\(\frac{\sqrt{13}+1}{2}\)
Đặt: \(P=\left(\sqrt{2+\sqrt{3}}-\sqrt{3+\sqrt{5}}\right)^2\)
=> \(2P=2\left(\sqrt{2+\sqrt{3}}-\sqrt{3+\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{2}.\sqrt{2+\sqrt{3}}-\sqrt{2}.\sqrt{3+\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{4+2\sqrt{3}}-\sqrt{6+2\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\right)^2\)
\(2P=\left(\left(\sqrt{3}+1\right)-\left(\sqrt{5}+1\right)\right)^2\)
\(2P=\left(\sqrt{3}-\sqrt{5}\right)^2=3+5-2\sqrt{15}=8-2\sqrt{15}\)
=> \(P=4-\sqrt{15}\)