Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=2015.20162016-2016.20152015\)
\(A=2015.\left(2016.10001\right)-2016.20152015\)
\(A=\left(2015.10001\right).2016-20152015.2016\)
\(A=20152015.2016-20152015.2016\)
\(A=0\)
Vậy A = 0
b, \(B=\left(3.4.2^{16}\right)^2\div11.2^{13}.4^{11}-16^9\)
\(B=3^2.2^4.2^{32}\div11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9\)
\(B=3^2.2^4.2^{32}\div11.2^{13}.2^{22}-2^{36}\)
\(B=3^2.2^{36}\div11.2^{35}-2^{36}\)
\(B=3^2.2^{35}.2\div11.2^{35}-2.2^{35}\)
\(B=3^2.2\div9=9.2\div9=2\)
Vậy B = 2
c, \(C=2^{10}.13+2^{10}.65\div2^8.104\)
\(C=2^{10}.\left(13+65\right)\div2^8.104\)
\(C=2^{10}.78\div2^8.104\)
\(C=2^{10}.39\div2^8.13\)
\(C=39\div13=3\)
Vậy C = 3
Đề bài câu c sai mk sửa nhé là 28 ms tính đc k nó dư lắm !!!
Lm A ví dụ trước nha :
\(A=1+2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2A=2+2^2+....+2^{101}\)
\(\Rightarrow A=2A-A=2^{101}-1\)
a) \(A=1+3+...+3^{50}\)
\(3A=3+3^2+...+3^{51}\)
\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)
B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)
\(=13+13\cdot3^2+...+13\cdot3^{48}\)
\(=13\left(1+3^2+...+3^{48}\right)⋮2\)
\(\Rightarrow A⋮3\)
C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)
\(=13+40\left(3^3+3^7+...+3^{47}\right)\)
Vậy A chia cho 40 dư 13
d) theo câu C
\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)
có tân cùng là 0
Mà + thêm 13 nên có tận cùng là 3
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
tui chiu
\(D=3^{100}+3^{104}+3^{108}+...+3^{2016}\)
\(\Rightarrow3^4D=3^{104}+3^{108}+...+3^{2020}\)
\(\Rightarrow3^4D-D=3^{2020}-3^{100}\)
\(\Rightarrow80D=3^{2020}-3^{100}\)
\(\Rightarrow D=\frac{3^{2020}-3^{100}}{80}\)