K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

\(\frac{x^5+x+1}{x^3-1}=\frac{x^5-x^2+x^2+x+1}{x^3-1}=\frac{x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{x^3-1}\)

\(=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x^3-x^2+1}{x-1}\)

18 tháng 12 2016

a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)

b, Giá trị của x để phân thức có giá trị bằng (-2) : 

\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)

18 tháng 12 2016

Ai giúp mình câu 2 với

\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)

\(=\frac{x\left(x+1\right)+\left(x+1\right)}{x\left(x-1\right)+2x^2-2x+x+1}\)

\(=\frac{\left(x+1\right)\left(x+1\right)}{x\left(x-1\right)+2\left(x-1\right)+\left(x+1\right)}\)

Ddeeff sao rồi bạn ko rút gọn được

8 tháng 11 2016

@lê thị hương giang

8 tháng 11 2016

\(A=\frac{x^{39}+x^{36}+x^{33}+...+x^3+1}{x^{40}+x^{38}+x^{36}+...+x^2+1}\)

Đặt \(C=x^{39}+x^{36}+x^{33}+...+x^3+1\)

\(x^3.C=x^{42}+x^{39}+x^{36}+...+x^3\)

\(\left(x^3-1\right)C=x^{42-1}\)

\(C=\frac{x^{42}-1}{x^3-1}\)

Đặt \(D=x^{40}+x^{38}+x^{36}+....+x^2+1\)

\(x^2.D=x^{42}+x^{40}+x^{38}+x^{36}+....+x^2\)

\(\left(x^2-1\right).D=x^{42}-1\)

\(D=\frac{x^{42}-1}{x^2-1}\)

Ta có :

\(C:D=\frac{x^{42}-1}{x^3-1}:\frac{x^{42}-1}{x^2-1}\)

\(C:D=\frac{x^2-1}{x^3-1}\)

\(C:D=\frac{x+1}{x^2+x+1}\)

Ta có : \(A=C:D=\frac{x+1}{x^2+x+1}\)

Vậy ...........

11 tháng 12 2018

a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)

11 tháng 12 2018

Bạn có thể giúp mình 2 câu còn lại dc kh ạ 

9 tháng 11 2016

Cả tử và mẫu có nhân tử chung là x2 + x + 1 rút gọn cái đó đi là được

\(=\dfrac{\left(x^{10}-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)}{x^8+x^4+1}\)

\(=\dfrac{x\left(x^9-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{x^8+2x^4+1-x^4}\)

\(=\dfrac{x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{\left(x^4+1\right)^2-x^4}\)

\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x^7+x^4+x+x^2\right)+\left(x^2+x+1\right)}{\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)}\)

\(=\dfrac{\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^7+x^2+x^4+x\right)+1\right]}{\left(x^4+2x^2+1-x^2\right)\left(x^4-x^2+1\right)}\)

\(=\dfrac{\left(x-1\right)\left(x^7+x^4+x^2+x\right)+1}{\left(x^2+1-x\right)\left(x^4-x^2+1\right)}\)