Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\) \(\frac{x^2+y^2+2xy-1}{x^2-y^2+1+2x}=\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-y+1\right)\left(x+y+1\right)}=\frac{x+y-1}{x-y+1}\)
\(b.\) \(\frac{x^3-3x^2-x+3}{x^2-3x}=\frac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\frac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\frac{x^2-1}{x}\)
Phân tích đa thức thành nhân tử
27y2-9(x+y)2=\(9\left(3y^2-\left(x+y\right)^2\right)\)
=\(9\left(\sqrt{3}y+x+y\right)\left(\sqrt{3}y-x-y\right)\)
Rút gọn biểu thức
(2x4-x3+3x2): (-1/3x)
=\(\frac{2x^4-x^3+3x^2}{-\frac{1}{3x}}=3x^3\left(-2x^2+x-3\right)\)
\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)
\(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)
\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)
Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên
\(\Leftrightarrow10⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)
\(\Rightarrow x=-1;0;-3;2\)
Vậy.......................
\(\frac{1-x^3}{x^2-1}=\frac{\left(1-x\right)\left(1+x+x^2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-x^2-x-1}{x+1}\)
Hoc tot