Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn các phân thức:
a) \(\frac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}=\frac{9x^2+12x+4-x^2-4x-4}{x^3-x^2}=\frac{8x^2+8x}{x^3-x^2}=\frac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\frac{8\left(x+1\right)}{x-1}\)
b) \(\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^3-x\right)+\left(2x^2-2\right)}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)
c) \(\frac{x^2+7x+12}{x^2+5x+6}=\frac{\left(x^2+3x\right)+\left(4x+12\right)}{\left(x^2+3x\right)+\left(2x+6\right)}=\frac{\left(x+3\right)\left(x+4\right)}{\left(x++3\right)\left(x+2\right)}=\frac{x+4}{x+2}\)
d) \(\frac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}=\frac{\left(x^{10}-x^8\right)+\left(x^6-x^4\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{x^8+x^4+1}{x^2+1}\)
a) (x - 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x4 - 1)(x4 + 1)(x8 + 1)
= (x8 - 1)(x8 + 1)
= x16 - 1
b) (a2 - 2b)(a2 + 2b)(a4 + 4b2)(a8 + 16b4)
= (a4 - 4b2)(a4 + 4b2)(a8 + 16b4)
= (a8 - 16b4)(a8 + 16b4)
= a16 - 256b8
D=(x2+x+1)(x2-x+1)(x4-x2+1)(x8-x4+1)
\(=\left(\left(x^2+1\right)^2-x^2\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right).\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right).\)
\(=\left(\left(x^4+1\right)^2-x^4\right)\left(x^8-x^4+1\right).\)
\(=\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)=\left(x^8+1\right)-x^8=x^{16}+x^8 +1\)
a) x(2x^2 -3) -x^2 (5x+1 ) + x^2
<=> 2x^3 -3x -5x^3 -x^2 +x^2
<=>3x^3 -3x
b) 3x(x-2) -5x(1-x)-8(x^2 -3)
=3x^2 -6x -5x +5x^2 -8x^2 +24
= -11x+24