Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{11-2\sqrt{10}}\) = \(\sqrt{1-2\sqrt{10}+\sqrt{10}^2}\) = \(\sqrt{\left(1-\sqrt{10}\right)^2}\)
= \(\left|1-\sqrt{10}\right|\)
= \(\sqrt{10}-1\)
b, \(\sqrt{21-6\sqrt{6}}\) = \(\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\cdot\sqrt{2}\cdot\sqrt{3}+\sqrt{3}^2}\)
= \(\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
= \(\left|3\sqrt{2}-\sqrt{3}\right|\)
= \(3\sqrt{2}\) - \(\sqrt{3}\)
A=\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}}\)=\(\frac{\sqrt{2}\left(\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}\right)}\)
A=\(\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{10+4\sqrt{6}}}{2+\sqrt{10}+\sqrt{2}-\sqrt{14+4\sqrt{10}}}=\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{6}-2}{2-\sqrt{10}+\sqrt{2}-\sqrt{10}-2}=\frac{3\sqrt{2}}{\sqrt{2}}=3\)
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)
b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)
\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)
\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)
a) Đặt \(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(A^2=5-2\sqrt{6}+2\sqrt{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}+5+2\sqrt{6}\)
\(=10+2\sqrt{25-4.6}=10+2\sqrt{1}=10+2=12\)
\(\Rightarrow A=\sqrt{12}\)
b)\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}.\sqrt{5}-\sqrt{2}}{\sqrt{5}-1}+\frac{\sqrt{2}.\sqrt{2}-\sqrt{2}}{\sqrt{2}-1}\)
\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
1 a/ Trục căn thức ở mẫu
\(VT=\frac{-\sqrt{1}+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{47}+\sqrt{48}}{48-47}\)\(=-\sqrt{1}+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{47}+\sqrt{48}=\sqrt{48}-1>3=VP\)
b/
\(2\left(10+3\sqrt{11}\right)=11+2.\sqrt{11}.3+9=\left(\sqrt{11}+3\right)^2\)
\(VT=\left(\sqrt{11}-3\right)\sqrt{2}\sqrt{10+3\sqrt{11}}=\left(\sqrt{11}-3\right)\left(\sqrt{11}+3\right)=11-9=2=VP\)
2/
\(B=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{2\left(5+\sqrt{3}.\sqrt{7}\right)}\)
\(2\left(5+\sqrt{21}\right)=7+2\sqrt{7}.\sqrt{3}+3=\left(\sqrt{7}+\sqrt{3}\right)^2\)
\(B=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)=\left(5+\sqrt{21}\right).4\)
\(=20+4\sqrt{21}\)
A chắc không rút gọn được.
a) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\frac{3}{7}}\)
b) \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}=\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}=\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)
c) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}\) (Bạn tự thêm đk)
d) \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\) (Bạn tự thêm đk)
a,A.√2= √(4+2√3)-√(4-2√3)
= √(1+√3)2 -√( √3 -1)2
= 1+√3-√3+1= 2
=> A= 2/√2=√2
B2= (4+√15)2.(4-√15).(√10-√6)2
= (4+√15).1.(16-4√15)
= (4+√15).(4-√15).4
= 4
=> B = √4 = 2
a) \(\sqrt{11-2\sqrt{10}}\)
\(=\sqrt{10-2\sqrt{10}+1}\)
\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)
\(=\sqrt{10}-1\)
b) \(\sqrt{21-6\sqrt{6}}\)
\(=\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}-\sqrt{3}\)