Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((x+y)^3-(x-y)^3\)
\(=x^3+3x^2y+3xy^2+y^3-(x^3-3x^2y+3xy^2-y^3)\)
\(=6x^2y+2y^3\)
Cách khác:
Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)
(x + y)3 - 3xy(x + y)
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= x3 + y3
1. y(y+1)-5y-5 2. 4x3=x
=y(y+1)-(5y+5) <=>4x3-x=0
=y(y+1)-5(y+1) <=>x(4x2-1)=0
=(y+1)(y-5) <=>x(4x2-1)=0
<=>\(\orbr{\begin{cases}x=0\\4x^2-1=0\end{cases}}\)=\(\orbr{\begin{cases}x=0\\4x^2=1\end{cases}}\)=\(\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}}\)=\(\orbr{\begin{cases}x=0\\x=+_-\frac{1}{2}\end{cases}}\)
3. M= (x+3)2 -(4x+1)-x(2x+1)
M= (x2+6x+9)-4x-1-2x2-x
M=x2+6x+9-4x-1-2x2-x
M= -x2+x+8
\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)
\(=-x^2+3y^2\)
\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)
Bài 1:
\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2+4xy-7y^2\)
\(=x^3+3x^2.5y+3x.25y^2+125y^3-\left(8x^6-3.4x^4+3.2x^2y^2-y^3\right)\)
\(=2x^3+15x^2y+75xy^2+125y^3-8x^6+12x^4-6x^2y^2\)
Mình lm luôn k ghi đề nhé
Bài 1:
\(P=2a^2-2b^2-a^2+2ab-b^2+a^2+2ab+b^2+b^2=2a^2-b^2+4ab\\ Q=\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(2x-3\right)\left(2x+3\right)\\ Q=\left(2x+3-2x+3\right)^2=9^2=81\)
Bài 2:
\(Sửa:A=x^2+2xy+y^2-4x-4y+2=\left(x+y\right)^2-4\left(x+y\right)+4-2\\ A=\left(x+y-2\right)^2-2=\left(3-2\right)^2-2=1-2=-1\)
\(\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3xy\left(x+y\right)\)