Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = (x - y)3 + (y + x)3 + (y - x)3 - 3xy(x + y)
= (x - y)3 - (x - y)3 + (x + y)[(x + y)2 - 3xy]
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2)
= x3 + y3
a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014
a)\(P=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)\)
\(P=5x-1+5x+4+\left(2-10x\right)\left(4+5x\right)\)
\(P=10x+3+8+10x-40x-50x^2\)
\(P=-20x+11-50x^2\)
b)\(Q=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(Q=x^3-3x^2y+3xy^2-y^3+y^3+3y^2x+3yx^2+x^3+y^3-3y^2x+3yx^2-x^3-3x^2y+3xy^2\)
\(Q=x^3+y^3\)
a) P = (5x - 1) + [(-2).(-1).(1-5x).(4+5x)] + (5x+4)^2
= (5x - 1).[(-1)-2.(-1).(4+5x)] + (25x^2+40x+16)
= [(5x - 1).(10x + 7)] + (25x^2+40x+16)
= 50x^2 +35x - 10x - 7 + 25x^2+40x+16
= 75x^2 + 65x -9
b) Q = (x-y)^3 + (x+y)^3 + (y-x)^3 - [3xy(x+y)]
Xét (x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 = x^3 + 3x^2y + 3xy^2 + y^3 = y^3 - 3xy^2 + 3x^2y - x^3
Do đó Q = (2x^3 + 6xy^2) + (y^3 - 3xy^2 + 3x^2y - x^3) - [3xy(x+y)]
= (x^3 + 3xy^2 + 3x^2y + y^3) - 3x^2y - 3xy^2
= x^3 + y^3
a, P=(5x-1)+2(1-5x)(4+5x)+(5x+4)
=5x-1+2.(4-15x-5x2)+5x+4
=5x-1+8-30x-10x2+5x+4
=-10x2-20x+11
b,Q=(x-y)^3 +(y+x)^3+ (y-x)^3 -3xy(x+y)
=x3-3x2y+3xy2-y3+y3+3x2y+3xy2+x3+y3-3y2x+3yx2-x3-3x2y-3xy2
=x3+y3
a)
P=(5x−1)+2(1−5x)(4+5x)+(5x+4)2
P=(5x−1)2+2(1−5x)(4+5x)+(5x+4)2−(5x−1)2
P=(5x−1+5x+4)2−(5x−1)2
P=(5x−1+5x+4−5x+1)(5x−1+5x+4+5x−1
b)
Q= (x-y)^3 + (x+y)^3 + (y-x)^3 - [3xy(x+y)]
(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3
(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3
(y-x)^3 = y^3 - 3xy^2 + 3x^2y - x^3
Q= (2x^3 + 6xy^2) + (y^3 - 3xy^2 + 3x^2y - x^3) - [3xy(x+y)]
= (x^3 + 3xy^2 + 3x^2y + y^3) - 3x^2y - 3xy^2
Q= x^3 + y^3
a) (2x^2 +2xy - xy -y^2 ) / (2x^2 - 2xy - xy +y^2)
= 2x(x+y) - y(x+y) / 2x(x-y) - y(x-y)
= (2x-y)(x+y) / (2x-y)(x-y)
= x+y/x-y
Rút gọn cái sau:
\(\frac{32x+4x^2+2x^3}{x^3+64}\)
\(=\frac{2x\left(x^2+2x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
Đề có vẻ sai sai ?
(x + y)3 - 3xy(x + y)
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= x3 + y3