Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ừ sửa lại thì ra kết quả là \(\sqrt{5\:\:\:}+1\)
Còn cách giải vẫn tương tự .
ta có : \(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}-2\sqrt{\left(4-\sqrt{10+2\sqrt{5}}\right)\cdot\left(4+\sqrt{10+2\sqrt{5}}\right)}.\)
\(A^2=8-2\sqrt{16-10-2\sqrt{5}}\)
=> \(A^2=8-\sqrt{5-2\sqrt{5}\cdot1+1}\)
<=> \(A^2=8-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8-\left(\sqrt{5}-1\right)\)
\(=9-\sqrt{5}\)
=> \(A=\sqrt{9-\sqrt{5}}\)
\(A=43+24\sqrt{3}-8\sqrt{20+2\sqrt{\left(3\sqrt{3}+4\right)^2}}\)
\(=43+24\sqrt{3}-8\sqrt{20+2\left(3\sqrt{3}+4\right)}\)
\(=43+24\sqrt{3}-8\sqrt{28+6\sqrt{3}}\)
\(=43+24\sqrt{3}-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)
\(=43+24\sqrt{3}-8\left(3\sqrt{3}+1\right)\)
\(=43-8=35\)
a) \(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\sqrt{4-3}=\sqrt{1}=1\)
b)
Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)
\(=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=8-6=2\)
\(\Rightarrow B=\sqrt{2}\)
Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
\(B=\frac{1}{\sqrt{5}+\sqrt{7}}-\frac{1}{\sqrt{5}-\sqrt{7}}=\frac{\sqrt{5}-\sqrt{7}-\sqrt{5}-\sqrt{7}}{5-7}=\frac{-2\sqrt{7}}{-2}=\sqrt{7}\)
\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}=\sqrt{\left(\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}+\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}\right)^2}\)
\(C=\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}+2\sqrt{\frac{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}}+\frac{4-\sqrt{7}}{4+\sqrt{7}}}\)
\(C=\sqrt{\frac{\left(4+\sqrt{7}\right)^2}{16-7}+\frac{\left(4-\sqrt{7}\right)^2}{16-7}+2}\)
\(C=\sqrt{\frac{\left(4+\sqrt{7}+4-\sqrt{7}\right)^2-2\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}{16-7}+2}\)
\(C=\sqrt{\frac{16^2-2\left(16-7\right)}{9}+2}=\sqrt{\frac{238}{9}+2}=\sqrt{\frac{256}{9}}=\frac{16}{3}\)
Chúc bạn học tốt ~
câu đầu bạn xem lại đề đi nha
các phần còn lại
b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)
c)tính từng căn nha
\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)
\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)
\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)
thay vào tính C đc C=2
d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)
=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)
=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)
a)\(\sqrt{1-2\sqrt{10}+10}=\sqrt{\left(1-\sqrt{10}\right)^2}=\left|1-\sqrt{10}\right|=\sqrt{10}-1\)
(vì 1<\(\sqrt{10}\))
b)\(\Rightarrow\sqrt{2}\left[\left(\sqrt{4-\sqrt{7}}\right)-\left(\sqrt{4+\sqrt{7}}\right)\right]=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+\sqrt{7}\right)^2}=\sqrt{7}-1-1-\sqrt{7}=-2\Rightarrow\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)}{\sqrt{2}}=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
A =\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(A^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
\(A^2=\left(\sqrt{4-\sqrt{7}}\right)^2-2.\sqrt{4-\sqrt{7}}.\sqrt{4+\sqrt{7}}+\left(\sqrt{4+\sqrt{7}}\right)^2\)
\(A^2=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)
\(A^2=8-2\sqrt{16-7 }\)
\(A^2=8-2\sqrt{9}=8-6=2\)
\(A=\frac{+}{ }\sqrt{2}\)
Vì là biểu thức lên phải có tên . lên mới có A @@!