K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,hđt số 3 = \(\left(a^2+2a\right)^2-9\) 

b,hđt số 3=\(\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)(đổi dấu làm ngoặc khi trước nó là dấu trừ)=\(x^2-\left(y-6\right)^2\)

a) \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2+3.\left(-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

b) \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)

\(=x^2-\left(y-6\right)^2\)

 

24 tháng 7 2018

\(15\left(2a^2-1\right)+5\left(3-\frac{1}{5a}-6a^2\right)\)

\(=30a^2-15+15-\frac{1}{a}-30a^2\)

\(=-\frac{1}{a}\)

tại \(a=2017\)=> M= \(\frac{-1}{a}=\frac{-1}{2017}\)

\(\left(x-y\right)\left(x^2+xy+y^2\right)+y^3\)

\(=x^3-y^3+y^3\)

\(=x^3\)

ại \(x=2\)=> N= \(x^3=2^3=8\)

17 tháng 8 2016

\(\left(x+1\right)\left(x^2-x-x^2+x-1\right)=-\left(x+1\right)\)

\(\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=-4a^2\)

\(\left(a^2+b^2+c^2+a^2-b^2-c^2\right)\left(a^2+b^2+c^2-a^2+b^2+c^2\right)=2a^2\left(2b^2+2c^2\right)=4a^2b^2+4a^2c^2\)

\(\left(a-5\right)^2\left(a+5\right)^2=\left(a^2-25\right)^2\)

\(\left(3a^3+1\right)^2-9a^2-\left(3a^3+1\right)^2=-9a^2\)

20 tháng 8 2018

em không biết

20 tháng 8 2018

Ta có:

\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)

\(=x^3-xy-x^3-x^2y+x^2y-xy\)

=-2xy

Thay x=1/2 và y = -100 vào biểu thcws , ta được

\(-2\cdot\frac{1}{2}\cdot\left(-100\right)=100\)

Vậy ...
cho mk nhé

4 tháng 10 2016

k ) \(125x^3-1\)

     \(=\left(5x\right)^3-1\)

     \(=\left(5x-1\right)\left[\left(5x\right)^2+5x.1+1^2\right]\)

     \(=\left(5x-1\right)\left(25x^2+5x+1\right)\)

m ) \(x^6-y^3=\left(x^2\right)^3-y^3=\left(x^2-y\right).\left[\left(x^2\right)^2+x^2.y+y^2\right]=\left(x^2-y\right).\left(x^4+x^2y+y^2\right)\)

n ) \(a^4-2a^2+1\)

\(=\left(a^2\right)^2-2.a^2.1+1^2=\left(a^2-1\right)^2\)

i ) \(a^3+6a^2+12a+8\)

\(=\left(a+2\right)^3\)

4 tháng 10 2016

k) \(125x^3-1=\left(5x\right)^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)

m) \(x^6-y^3=\left(x^2\right)^3-y^3=\left(x^2-y\right)\left(x^4+x^2y+y^2\right)\)

n) \(a^4-2a^2+1=\left(a^2-1\right)^2=\left(a^2-1\right)\left(a^2-1\right)=\left(a-1\right)\left(a+1\right)\left(a-1\right)\left(a+1\right)\)

i) \(a^3+6a^2+12a+8=\left(a+2\right)^2\)

19 tháng 9 2016

b)\(x^3-6x^2+12x-8-\left(x^3-6x^2\right)\)  

<-> \(x^3-6x^2+12x-8-x^3+6x^2\) 

<->12x-8

d)\(x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)\)

\(x^3+6x^2+12x+8-x^3+6x^2-12x+8\) 

\(12x^2+16\)

1 tháng 11 2020

a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)

\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)

\(=x^2+4x\)

Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)

b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

Thay \(x=10\)\(y=-1\)vào biểu thức ta có: 

\(B=10^3-\left(-1\right)^3=1000+1=1001\)

14 tháng 8 2020

a) \(A=\left(x-y\right)^2+\left(x+y\right)^2\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(=x^2-2xy+y^2+x^2+2xy+y^2\)

\(=\left(x^2+x^2\right)-\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

\(=2x^2+2y^2\)

\(=2.\left(x^2+y^2\right)\)

b) \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(=\left(4a^2-4a^2\right)+\left(4ab+4ab\right)+\left(b^2-b^2\right)\)

\(=8ab\)\

c) \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(=x^2+2xy+y^2-x^2+2xy-y^2\)

\(=\left(x^2-x^2\right)+\left(2xy+2xy\right)+\left(y^2-y^2\right)\)

\(=4xy\)

d) \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+1-8x^2+24x-18+4\)

\(=\left(4x^2-8x^2\right)-\left(4x-24x\right)+\left(1-18+4\right)\)

\(=-4x^2+20x-13\)

\(=-4x^2+20x-25+12\)

\(=-\left(4x^2-20x+25\right)-8\)

\(=-\left[\left(2x\right)^2-2.4x.5+5^2\right]-8\)

\(=-\left(2x-5\right)^2-8\)