Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3x ( x2 - 2x + 3) - x2 ( 3x - 2 ) + 5 ( x2 - x )
A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x
A = ( 3x3 - 3x3 ) - ( 6x2 - 2x2 - 5x2 ) + ( 9x - 5x )
A = x
a) A = 3x(x2 - 2x + 3) - x2(3x - 2) + 5(x2 - x)
= 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x
= x2 + 4x
Thay x = 5 vào A ta có:
A = 52 +4.5
= 45
Vậy giá trị của A tại x = 5 là 25
b) B = x(x2 + xy + y2) - y(x2 + xy+ y2)
= x3 + x2y + xy2 - x2y - xy2 - y3
= x3 - y3
Thay x = 10 và y = -1 vào B, ta có:
B = 103 - (-1)3
= 1000 + 1
= 1001
Vậy giá trị của B tại x = 10 và y = -1 là 1001
Bài 1:
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)
\(=2a.2b\)
\(=4ab\)
Câu 1:
a) (a +b )2 - ( a -b )2
=a2+b2-a2+b2
=2b2
b) (a + b )3- ( a - b )3 - 2b3
=a3+b3-a+b3-2b3
=a3-a
c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2
=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2
=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2
=0
a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)
\(A=xy\left(x+y\right)+\left(y-x\right)\)
\(A=\left(-5\right).2\left(-5+2\right)+2+5\)
\(A=30+7=37\)
b) \(B=3x^3-2y^3-6x^2y^2+xy\)
\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)
\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)
\(B=\frac{11}{36}\)
c) \(C=2x+xy^2-x^2y-2y\)
\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)
\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)
\(C=-\frac{11}{36}\)
Bài 1:
1.1
a) Ta có: \(A=\left(x+y\right)\left(x-y\right)+x\left(2x-1\right)+y\left(y+1\right)\)
\(=x^2-y^2+2x^2-x+y^2+y\)
\(=3x^2-x+y\)
b) Thay x=1 và y=2018 vào biểu thức \(A=3x^2-x+y\), ta được:
\(A=3\cdot1^2-1+2018\)
\(=2+2018=2020\)
Vậy: Khi x=1 và y=2018 thì A=2020
1.2
a) Ta có: \(2x^2\left(x^2-3x+1\right)\)
\(=2x^2\cdot x^2-2x^2\cdot3x+2x^2\cdot1\)
\(=2x^4-6x^3+2x^2\)
b) Ta có: \(\left(2x-1\right)\left(6x^2+3x-3\right)\)
\(=2x\cdot6x^2+2x\cdot3x-2x\cdot3-6x^2-3x+3\)
\(=12x^3+6x^2-6x-6x^2-3x+3\)
\(=12x^3-9x+3\)
1.3
a) Ta có: \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b) Ta có: \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-y\right)\left(x-8\right)\)
1.1
a) A= (x+y).(x-y) + x(2x-1) + y(y+1)
= x2- x.y + x.y - y2 + 2x2 - x +y2 + y = 3x2 - x + y
b) Ta có A= 3x2 - x + y; thay x=1,y=2018 vào biểu thức:
A= 3.12 - 1+ 2018 = 2020
1.3
a)x3 - 2x2 + x = x.( x2 - 2x + 1) = x.(x-1)2
b) x2 - xy - 8x + 8y = x.(x - y) - 8.(x - y)= (x - y).(x-8).
Xin lỗi nha, tớ không biết làm bài 1.2.
Chúc bạn học tốt!!
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)
=> đpcm
b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)
\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)
\(B=\frac{2}{27}\)
=> đpcm
c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)
\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)
\(C=0\)
=> đpcm
a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)
\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)
\(=x^2+4x\)
Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)
b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
Thay \(x=10\); \(y=-1\)vào biểu thức ta có:
\(B=10^3-\left(-1\right)^3=1000+1=1001\)