Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4^{2007}+4^{2006}+...+4^2+4+1\)
\(\Leftrightarrow4B=4^{2008}+4^{2007}+...+4^3+4^2+4\)
\(\Leftrightarrow B=\dfrac{4^{2008}-1}{3}\)
\(A=75B+25=25\cdot4^{2008}-25+25=25\cdot4^{2008}\)
a) \(\left(x+3\right)\left(x-1\right)-2\left(x+3\right)^2+\left(x-4\right)\left(x+4\right)\)
\(=x^2-x+3x-3-2\left(x^2+6x+9\right)+x^2-16\)
\(=2x^2+2x-19-2x^2-12x-18\)
\(=-10x-37\)
b) \(\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{24}\)
\(=\frac{5^{32}-1}{24}\)
a) (x+3)(x-1)-2(x+302)+(x-4)(x+4)=x2+2x-3-2x-1800+x2-16=2x2-1819
b)...=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)=(5^4-1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)
=(5^8-1)(5^8+1)(5^16+1)/(5^2-1)=(5^16-1)(5^16+1)/(5^2-1)=(5^32-1)/(5^2-1)
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
Đặt \(A=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(\Rightarrow2A=24.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^2-1\right).\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^4-1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^8-1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}-1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}\right)^2-1^2\)
\(2A=5^{32}-1\)
\(\Rightarrow A=\frac{5^{32}-1}{2}.\)