Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath
1) x2-4x+5+y2+2y=0
<=>x2-4x+4+y2+2y+1=0
<=>(x-2)2+(x+1)2=0
<=>x-2=0 và x+1=0
<=>x=2 và x=-1
2)2p.p2-(p3-1)+(p+3)2p2-3p5
<=>2p3-p3+1+2p3+6p2-3p5
<=>3p3+6p2-3p5+1
3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1
=1
4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3
=-18x2+3(đề sai)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x
=16
Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x
5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0
b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0
6)M+(12x4-15x2y+2xy2+7)=0
<=>M =-(12x4-15x2y+2xy2+7)
<=>M =-12x4+15x2y-2xy2-7
1) Từ \(x+y+z=6\) và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)
Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)
Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.
Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm
Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)
-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9
Vậy mệnh đề đúng với n=1
-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó, \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1
Ta phải cm mệnh đề cũng đúng với k+1:
Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)
<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)
Ta thấy:
\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.
Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3
-1 chia 9 dư -1
Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9
Kết luận: Mệnh đề đúng với mọi n thuộc Z
1)
Nếu x>1 thì x^2>1; y^2;z^2 cx lớn=1
=> x^2+y^2+z^2>1=> Loại
Nếu x<-1=> x^2>1; y^2;z^2 cx lớn=1
=> x^2+y^2+z^2>1=> Loại
CMTT vs y,z thì -1<=x,y,z<=1
TH1: -1<=x<0
=> x<x^2 do x âm và x^2 dương
CMTT => y<y^2; z<z^2
=> x+y+z<x^2+y^2+z^2
Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2
=> LOẠI.
TH2: 0<=x,y,z<=1
=> x>=x^2; y>=y^2; z>=z^2
=> x+y+z>=x^2+y^2+z^2
Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2
=> ''='' xảy ra <=> x=0 hoặc 1; y=0 hoặc 1; z=0 hoặc 1
=> (x,y,z)=(0;0;1) và các hoán vị
=> A=1.
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
1. Rút gọn biểu thức:
(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)
= (x - y + z)2 + 2(x - y + z)(y - z) + (y - z)2
= (x - y + z + y - z)2
= x2
2. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1
Giải
Đặt a = 5q + 4 (q \(\in\) N), ta có:
a2 = (5q + 4)2 = 25q2 + 40q + 16 = (25q2 + 40q + 15) + 1 chia cho 5 dư 1.