K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị...
Đọc tiếp

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\)   Biết x2 - 2y2 = xy và xy \(\ne\)0

Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........

Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........

Câu 4: Số A = ( 255 )2 . (522  )5 có số chữ số là......

Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị của biểu thức x2 + \(\frac{1}{x^2}\)là.......

Câu 6: Cho x, y là các số khác 0 thỏa mãn x2 - 2xy + 2y2 - 2x + 6y + 5 = 0

Giá trị của biểu thức P = \(\frac{3x^2y-1}{4xy}\) là........

Câu 7: Một hình thang cân có góc ở đáy bằng 450, cạnh bên bằng 2cm, đáy lớn bằng 3cm. Độ dài đường trung bình của hình thang là..........

Câu 8: Biến đổi biểu thức \(\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) với x \(\ne\) 2 ta được phân thức .................

1
3 tháng 1 2017

trôi hết đề : Câu 7

\(\left(3-\sqrt{2}\right)\)

câu 8:

\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)

Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)

5 tháng 4 2019

Áp dụng dãy tỉ số bằng nhau:

 \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}=x+y+z\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b}=\frac{z^2}{c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)

=> \(x+y+z=x^2+y^2+z^2\)

Suy ra: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zt\right)=x+y+z+2\left(xy+yz+zt\right)\)

=> \(xy+yz+zt=\frac{1}{2}\left(x+y+z\right)^2-\frac{1}{2}\left(x+y+z\right)\)

Đặt x+y+z=t

Ta có: \(xy+yz+zt=\frac{1}{2}\left(t^2-t\right)\)

M=xy+yz+zt=\(\frac{1}{2}\left(t^2-t\right)+2015=\frac{1}{2}\left(t^2-2.t.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+2015=\frac{1}{2}\left(t-\frac{1}{2}\right)^2-\frac{1}{8}+2015\)

\(=\frac{1}{2}\left(t-\frac{1}{2}\right)^2+\frac{16119}{8}>0\)

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\) Biết x2 - 2y2 = xy và xy \(\ne\)0 Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........ Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........ Câu 4: Số A = ( 255 )2 . (522 )5 có số chữ số là...... Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị của...
Đọc tiếp

Câu 1: Giá trị của biểu thức \(\frac{x-y}{x+y}\) Biết x2 - 2y2 = xy và xy \(\ne\)0

Câu 2: Biết đa thức x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư 5. Khi đó giá trị của a là ........

Câu 3: Một đa giác đều có tổng tất cà các góc ngoài và một góc trong bằng 5000. Số cạnh của đa giác đều đó là........

Câu 4: Số A = ( 255 )2 . (522 )5 có số chữ số là......

Câu 5: Cho x + \(\frac{1}{x}\)= 5. Giá trị của biểu thức x2 + \(\frac{1}{x^2}\)là.......

Câu 6: Cho x, y là các số khác 0 thỏa mãn x2 - 2xy + 2y2 - 2x + 6y + 5 = 0

Giá trị của biểu thức P = \(\frac{3x^2y-1}{4xy}\) là........

Câu 7: Một hình thang cân có góc ở đáy bằng 450, cạnh bên bằng 2cm, đáy lớn bằng 3cm. Độ dài đường trung bình của hình thang là..........

Câu 8: Biến đổi biểu thức \(\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) với x \(\ne\) 2 ta được phân thức .................

2
5 tháng 1 2017

Câu 1:1/3 Câu 2 : 15/2 Câu 3 : Câu 4 :111 Câu 5 :23 Câu 7 : 3-2\(\sqrt{2}\) Câu 8\(\frac{2}{\left(x-2\right)^2}\)

5 tháng 1 2017

Mà bàn là Fan của Chanyeol EXO hả ? Nếu là fan thi minh cung IDOl do ,nhưng cho mình hỏi bạn là con trai phải không ?

28 tháng 9 2016

Bài 1 :

a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

28 tháng 9 2016

Đã có kết quả

Bài 1,chữa phần a

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)

=xy(x+y+z)+yz(x+y+z)+xz(x+z)

=y(x+y+z)(x+z)+xz(x+z)

=(x+z)(xy+y2+yz+xz)

=(x+z)(x+y)(y+z)

Chữa phần b

x3-x+3x2y+3xy2+y3-y

=(x+y)(x+y-1)(x+y+1)

Bài2

a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc

Ai làm đúng như này ớ sẽ k

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = xa) Tìm điều kiện của n để phương trình có ngiệm x>0;b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.2) Rút gọn biểu thức sau:A = (x3 - y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)-...
Đọc tiếp

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:

1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = x

a) Tìm điều kiện của n để phương trình có ngiệm x>0;

b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.

2) Rút gọn biểu thức sau:

A = (x- y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)- [\(\frac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\frac{y}{y-x}\)]:[\(\frac{x-y}{x}-\frac{x}{x-y}\)]}

3) Tìm các số a, b để đa thức P(x) luôn chia hết cho đa thức Q(x) với:

P(x) = 6x- 7x+ ax+ 3x + 2

Q(x) = x- x + b

4) Xác định đa thức bậc ba F(x). Biết F(0) = 8; F(1) = 20; F(2) = 2; F(3) = 2004:

F(x) = ax(x - 1)(x - 2) + bx(x - 1) + cx + d

5) C/m rằng: Hiệu các bình phương của 2 số tự nhiên lẻ bất kì luôn chia hết cho 8

6) Cho biểu thức M = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)và B = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

a) Chứng minh rằng nếu A = 1 thì B = 0.

b) Ngược lại nếu B =0 thì A = 0 có đúng không? Vì sao?

                                                                              - The End -

 

0
22 tháng 3 2016

a=-7 b=6

27 tháng 3 2016

b2)<=>A=(x2-x)(x2-x-2)=24.

Đặt x2-x-1=t =>A=(t+1)(t-1)=24 <=>t2-1=24 <=>t2-25=0 <=>t=5 hoặc t=-5 

khi t=5 => x=3 hoặc x=-2

khi t=-5 (loại)

Vậy x=3 hoặc x=-2 

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.