K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B = (sin2a + cos2a)2 = 12 = 1

8 tháng 7 2022

\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos\alpha^2\right)^2=1^2=1\)

1 tháng 7 2017

... \(=\left(sin^2a\right)^2+2\cdot sin^2a\cdot cos^2+\left(cos^2a\right)^2=\left(sin^2a+cos^2a\right)^2=1^2=1\)

1 tháng 7 2017

\(sin^4a+cos^4a+2sin^2a\cdot cos^2a\)

\(=1-2sin^2a\cdot cos^2a+2sin^2a\cdot cos^2a\)

\(=1\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)

22 tháng 10 2016

A = sin6x + cos6x +sin4x +cos4x + 5sin2x.cos2x

\(=\left(\sin^2x+\cos^2x\right)\left(\sin^4x-\sin^2x\cos^2x+\cos^4x\right)+\sin^4x+\cos^4x+5\sin^2x\cos^2x\)

\(=2\left(\sin^2x+2\sin^2x\cos^2x+\cos^2x\right)\)

\(=2\)

16 tháng 7 2016

a) \(\sqrt{0,49\cdot a^2}=\sqrt{0,7^2\cdot a^2}=\sqrt{\left(0,7\cdot\left|a\right|\right)^2}=0,7\left|a\right|\) (với a < 0)

b) \(\sqrt{25\left(7-a\right)^2}=\sqrt{\left[5\left(7-a\right)\right]^2}=5\left|7-a\right|\) (với a >/ 7)

c) \(\sqrt{a^4\left(a-2\right)^2}=a^2\left(a-2\right)=a^3-2a\) (với a >0 )

Tớ mới học nên cx ko chắc chắn lắm nhé.

NV
18 tháng 6 2019

\(A=\frac{1-2sina.cosa}{sin^2a-cos^2a}=\frac{sin^2a+cos^2a-2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}\)

b/ \(A=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{\frac{1}{3}-1}{\frac{1}{3}+1}=-\frac{1}{2}\)

25 tháng 7 2018

áp dụng công thức sin2a+cos2a=1

A= sin2a +cos2a-2sina.cosa-sin2a-cos2a+2sina.cosa = 0

B=(sỉn2a+cos2a)2 =12 =1

C= cos2a(cos2a+sin2a)+ sin2a=cos2a+sin2a=1

D=sin2a(sin2p+cos2p)+cos2a=sin2a+cos2a=1

E= (sin2a+cos2a)(sin4a-sin2a.cos2a+cos4a)+3sin2a.cos2a

=sin4a+2sin2a.cos2a+ cos4a=(sin2a+cos2a)2=1