Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,
\(A=1+2+2^2+2^3+...+2^{50}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+2^3+...+2^{51}-1+2+2^2+...+2^{50}\)
\(\Rightarrow A=2^{51}-1\)
A= 1/2+1/22+1/23+1/24+.....+1/22019
2A= 1+1/2+1/22+1/23+1/24+.....+1/22018
2A-A=(1+1/2+1/22+1/23+1/24+.....+1/22018)-(1/2+1/22+1/23+1/24+.....+1/22019)
A=1-1/22019
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(2A-A=2-\frac{1}{2^{2012}}\Rightarrow A=2-\frac{1}{2^{2012}}\)
\(A=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2012}+1}{2^{2012}}\)
2A=251-250+249-248+...+23-22+2
=>2A+A=251-250+249-248+...+23-22+2+250-249+248-247+...+22-2+1
=>3A=251-1
=>A=\(\frac{2^{51}-1}{3}\)