Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,
\(A=1+2+2^2+2^3+...+2^{50}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+2^3+...+2^{51}-1+2+2^2+...+2^{50}\)
\(\Rightarrow A=2^{51}-1\)
2A=251-250+249-248+...+23-22+2
=>2A+A=251-250+249-248+...+23-22+2+250-249+248-247+...+22-2+1
=>3A=251-1
=>A=\(\frac{2^{51}-1}{3}\)
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
\(S=1+3+3^2+3^3+...+3^{49}\)
\(3S=3.\left(1+3+3^2+3^3+...+3^{49}\right)\)
\(=3+3^2+3^3+3^4+...+3^{50}\)
\(3S-S=\left(3+3^2+3^3+3^4+...+3^{50}\right)-\left(1+3+3^2+3^3+...+3^{49}\right)\)
\(2S=3^{50}-1\)
\(S=\frac{3^{50}-1}{2}\)
S=1+3+32+33+...+349
S=\(\frac{\left(3^{49}\text{+}1\right)50}{\text{2}}\)
S=25.349+25
a) A = 2 + 22 + 23 +...+ 229
=>2A= 22 + 23 +...+ 230
=>2A-A= 22 + 23 +...+ 230-2-22-23-...-229
=>A.(2-1)=230-2
=>A=230-2
b) B = 1 + 3 + 32 + 33 + ... + 339
=>3B=3 + 32 + 33 + ... + 340
=>3B-B=3 + 32 + 33 + ... + 340-1 - 3 - 32 - 33 - ... - 339
=>B(3-1)=340-1
=>B.2=340-1
=>B=\(\frac{3^{40}-1}{2}\)
nhiều wa 2 câu trước
a) A= 2 + 2^2 + 2^3 + ... + 2^29
2A= 2. (2 + 2^2 + 2^3 + ... + 2^29)
2A= 2^2 + 2^3 + 2^4 + ... +2^29 + 2^30
- (dấu trừ viết ra đầu dòng nha)
A= 2 + 2^2 + 2^3 + 2^4 ... + 2^29
1A= 2^29 - 2
A= 2^29 -2 trên 1
kick mk nha
J=6 + 16 + 30 + 48 +...+ 19600 + 19998
Chia cả 2 vế cho 2 ta được
B/2 = 3 + 8 + 15 + 24 + ......... + 98000+ 9999
B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101
B/2= 100/6[(100-1)x(2x100+1)] = 328350
-> B =328350x2=656700
K=2 + 5 + 9 + 14 + ....+ 4949 + 5049
Nhân cả 2 vế với 2 ta được
2xD=1x4+ 2x5+ 3x6+ 4x7+……..+98x101+99x102
2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)
2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2
2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)
2xD = 333300 + 9900 = 343200
-> D= 343200 :2 =171600