K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2019

Giúp tuii với huhuu

5 tháng 6 2017

Do \(a,b< 1\Rightarrow a^3< a^2< a< 1;b^3< b^2< b< 1\)Ta có:\(\left(1-a^2\right)\left(1-b\right)>0\Rightarrow1+a^2b>a^2b\)

\(\Rightarrow1+a^2b>a^3+b^3haya^3+b^3< 1+a^2b\)Tương tự \(b^3+c^3< 1+b^2c;c^3+a^3< 1+c^2a\)

\(\Rightarrow2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa

12 tháng 4 2018

qua de

12 tháng 4 2018

       \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)  (do  a+b+c # 0)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)     (bn nhân với 2 rồi tách, nhóm lại nhé)

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Leftrightarrow\)\(a=b=c\)

\(D=\left(\frac{a}{2b}\right)^2+\left(\frac{b}{2c}\right)^2+\left(\frac{c}{2a}\right)^2\)

\(=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\)\(=\frac{3}{4}\)

12 tháng 8 2018

Đặt \(a+b-2c=x,b+c-2a=y,c+a-2b=z\)

\(\Rightarrow x+y+z=0\)

Chắc bạn biết: \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Vậy \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)

Chúc bạn học tốt.

12 tháng 8 2018

Đặt:  \(a+b-2c=x;\)   \(b+c-2a=y;\)\(c+a-2b=z\)

=>   \(x+y+z=0\)

=>  \(x^3+y^3+z^3=3xyz\)

Thay trở lại ta được:

\(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)

\(=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)

20 tháng 10 2019

Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)

\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)

Do đó ta có đpcm

Chúc bạn học tốt!

19 tháng 2 2020

a) A = (a - b)3 + (b - c)3 + (c - a)3

Đặt : a - b = x ; b - c = y; c - a = z thì x + y + z = 0

Do đó: \(x^3+y^3+z^3=3xyz\)

Vậy A = \(3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) B = (a + b - 2c)3 + (b + c - 2a)3 + (c + a - 2b)3

Đặt : a + b - 2c = x ; b + c - 2a = y ; c + a - 2b = z

Thì x + y + z = 0 do đó \(x^3+y^3+z^3=3xyz\)

Vậy B = 3(a + b - 2c)(b + c - 2a)(c + a - 2b)

banhquabanhbanhquabanh

a) Ta có: \(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3\)

\(=-3\left(a^2b+ac^2-ab^2-bc^2+b^2c-a^2c\right)\)

\(=3\left[\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\right]\)

\(=3\left[ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)\right]\)

\(=3\left[ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\right]\)

\(=3\left(a-b\right)\left[ab+c^2-c\left(a+b\right)\right]\)

\(=3\left(a-b\right)\left(ab+c^2-ca-cb\right)\)

\(=3\left(a-b\right)\left[\left(ab-ac\right)-\left(bc-c^2\right)\right]\)

\(=3\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]\)

\(=3\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

b) Phân tích đa thức thành nhân tử,(a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8