K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

\(x^3+y^3+z^3\)

\(=\left(x+y+z\right).\left(x+y+z\right).\left(x+y+z\right)\)

Mà x + y + z chia hết cho 6

\(\Rightarrow x^3+y^3+z^3⋮6\)

k mik nha!

9 tháng 8 2017

Xét hiệu :

\(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)\)

\(=\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)\)

\(=x\left(x^2-1\right)+y\left(y^2-1\right)+z\left(z^2-1\right)\)

\(=\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)\)

Vì các tích \(\left(x-1\right)x\left(x+1\right);\left(y-1\right)y\left(y+1\right);\left(z-1\right)z\left(z+1\right)\) là tích của 3 số TN liên tiếp 

Nên \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮6\\\left(y-1\right)y\left(y+1\right)⋮6\\\left(z-1\right)z\left(z+1\right)⋮6\end{cases}}\)\(\Rightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)⋮6\)

Hay \(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)⋮6\)

Mà \(\left(x+y+z\right)⋮6\)(gt) \(\Rightarrow x^3+y^3+z^3⋮6\)(đpcm)

3 tháng 5 2015

ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz) 
<=> xy+yz+xz = 0 (*) 

****) ÁP DỤNG KẾT QUẢ SAU : 

ta có :  a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc 
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :

x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2) 
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))

<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**) 

+/ mà : x+y+z = 1 (***)

****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0 
<=> U = 0 HOẶC U = 1

+/ suy ra : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0 

+/ DO ĐÓ : x+y^2+z^3 = 1 

+/ SUY RA : điều phải chứng minh !

 

3 tháng 5 2015

ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz) 
<=> xy+yz+xz = 0 (*) 

****) ÁP DỤNG KẾT QUẢ SAU : 

ta có :  a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc 
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :

x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2) 
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))

<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**) 

+/ mà : x+y+z = 1 (***)

****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0 
<=> U = 0 HOẶC U = 1

+/ => : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0 

+/ do đó : x+y^2+z^3 = 1 

+/ =>: điều phải chứng minh !

6 tháng 2 2016

12

ủng hộ mk nha

12 nha bạn!

12 tháng 2 2016

nhiều quá bạn ơi duyệt đi

8 tháng 9 2017

Ta có : x + y + z = 0 => x + y = -z => (x + y)3 = (-z)3

=> x3 + 3x2y + 3xy2 + y3 = (-z)3

=> x3 + y3 + z3 + 3x2y + 3xy2 = 0

=> x3 + y3 + z3 + 3xy(x + y) = 0

Mà x + y = -z

Nên :  x3 + y3 + z3 + 3xy(-z) = 0

=>  x3 + y3 + z3 - 3xyz = 0

=> A = 0

Vậy x + y + z = 0 thì A = 0 (đpcm)

8 tháng 9 2017

Từ:

 x + y + z = 0 

=> x + y = -z 
<=> (x + y)^3 = (-z)^3 
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3 
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2 
<=> x^3 + y^3 + z^3 = -3xy(x+y) 
<=> x^3 + y^3 + z^3 = -3xy(-z) 
<=> x^3 + y^3 + z^3 = 3xyz 

P/s: Tham khảo nha