K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)

\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)

=0

b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)

\(=\left(1-1\right)+...+\left(1-1\right)\)

=0

c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)

=0

f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)

15 tháng 5 2017

cần gấp ko bn

15 tháng 5 2017

mình cần gấp bạn ơi

9 tháng 7 2019

1,+) Thay x = 5 vào biểu thức A, ta có:

A = 4.52 - 5.|5| + 2.|3 - 5|

A = 4.25 - 5.5 + 2.2

A = 100 - 25 + 4

A = 75 + 4 = 79

Thay x = 3 vào biểu thức A, ta có:

A = 4.32 - 5.|3| + 2.|3 - 3|

A = 4.9 - 5.3 + 2.0

A = 36 - 15 = 21

+) Ta có: B = xy + x2y2 + x3y + ... + x100y100

             B = xy + (xy)2 + (xy)3 + ... + (xy)100

Thay x = 1; y=  -1 vào biểu thức B, ta có:

B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ...  + [1.(-1)]100

B = -1 + 1 - 1 + ... + 1

B = 0

+) Thay x = 1 vào C, ta có:

C = 100.1100 + 99.199 + 98.198 + ... + 2.12  + 1

C = 100 + 99 + 98 + ... + 2 + 1

C = (100 + 1).[(100 - 1) : 1 + 1] : 2

C = 101.100 : 2

C = 5050

+) Thay x = 99 vào biểu thức D, ta có:

D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1

D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99  + 1).9996 + ... + (99 + 1).99 - 1

D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1

D = 99 - 1 = 98

24 tháng 4 2017

\(M\left(x\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{100}\)

        \(=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+\left(-1\right)^5+...+\left(-1\right)^{98}+\left(-1\right)^{99}+\left(-1\right)^{100}\)

        \(=1+\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)+1\)             

        \(=1\)       

\(N\left(-1\right)=\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+\left(-1\right)^8+...+\left(-1\right)^{100}\)

                  \(=1+1+1+1+...+1\)

                   \(=50.1=50\)

\(M\left(-1\right)-N\left(-1\right)=1-50=-49\)

24 tháng 4 2017

thak nhìu nhắm :D

29 tháng 7 2016

bài 1 

A(x)=\(x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x+1\)

      = \(x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}-\left(99+1\right)x^{96}+...+\left(99+1\right)x-1\)

thay 99=x ta được:

A(x)=\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...+\left(x+1\right)x-1\)

      = \(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...+x^2+x-1\)

      =x-1

thay x=99 vào đa thức A(x) ta được :

A(99)=99-1

         =98

vậy tại x=99 thì giá trị của A(x)=98

bài 2:

tại x=1 thay vào đa thức P(x) ta được :

P(1)=\(100.1^{100}+99.1^{99}+...+2.1^2+1\)

       = 100+99+...+2+1

       =5050

vậy tại x=1 thì giá trị của P(x)=5050

31 tháng 7 2016

sao lại thay x=99-2 lần thế

8 tháng 3 2018

a. Thay x = -1 vào biểu thức ta được:

\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)

\(=1-1+1-1+...+1-1\)

\(=0\)

b. Thay x = -1 vào biểu thức ta được:

\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)

\(=1-1+1-1+...+1-1\)

\(=0\)

8 tháng 3 2018

d.

Thay x = 1 và y= -1 vào biểu thức ta được:

\(1^{10}.\left(-1\right)^{10}+1^9.\left(-1\right)^9+1^8.\left(-1\right)^8+...+1.\left(-1\right)\)

\(=1-1+1-1+...+1-1\)

\(=0\)

13 tháng 6 2018

*) f(1) = 1^100 + 1^99 + ...+ 1 + 1

= 1+ 1 + 1 + ...+ 1 + 1 (101 số 1)

= 101

tương tự:

*) f(-1) = -1 - 1 - 1 ... - 1 - 1 + 1 (100 chữ số 1)

= -100 + 1 = -99

*) đặt f(2) = 2^100 + 2^99 + ...+ 2^2 + 2 + 1 = A

=> 2A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2

=> 2A - A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2 - ( 2^100 + 2^99 + ...+ 2^2 + 2 + 1)

<=> A = 2^101 - 1

=> f(2) = 2^101 - 1

tương tự:

*) đặt f(-2) = -2^100 - 2^99 ...- 2^2 - 2 - 1 = B

=> 2B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2

=> 2B -B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2 - ( -2^100 - 2^99 ...- 2^2 - 2 - 1)

<=> B = -2^101 + 1

=> f(-2) = -2^101 + 1

13 tháng 6 2018

g(1) = 1 + 1^3 + 1^5 + ... + 1^101 (51 số 1)

= 51

g(-1) = -1 - 1^3 - 1^5.... - 1^101 (51 số 1)

= -51

đặt g(3) = 3 + 3^3 + 3^5 + ...+ 3^101 = A

=> 3^2 * A = 3^3 + 3^5 + ....+ 3^103

=> 9A - A = 3^3 + 3^5 + ....+ 3^103 - (3 + 3^3 + 3^5 + ...+ 3^101)

=> 8A = -3 + 3^103

=> A = \(\dfrac{3^{103}-3}{8}\)

=> g(3) = \(\dfrac{3^{103}-3}{8}\)