Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: f(x) = x100+x99+x98+...+x+1
=>2f(x) = x101+x100+x99+...+x+1
=>f(x) = 2f(x)-f(x)=(x101+x100+...+x+1)-(x100+x99+...+x+1)= x101-1
=>f(2) = 2101-1
=>f(-2) = (-2)101-1
b)câu còn lại tự giải :D
f(x) = x100+x99+x98+...+x+1
=>2f(x) = x101+x100+x99+...+x
=>f(x) = 2f(x)-f(x)=(x101+x100+...+x)-(x100+x99+...+x+1)= x101-1
=>f(2) = 2.101-1 = 201
=>f(-2) = (-2)101-1 = -203
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
Câu a, Gợi ý thôi nhé
\(f\left(x\right)=\frac{\left(f\left(x\right)+g\left(x\right)\right)+\left(f\left(x\right)-g\left(x\right)\right)}{2}\)
và \(g\left(x\right)=\frac{\left(f\left(x\right)+g\left(x\right)\right)-\left(f\left(x\right)-g\left(x\right)\right)}{2}\)
thay biểu thức trên vào là ra nhé
b, Chú ý: f(100) sẽ có x-100=0 nhé, nên em tách các số ra sao cho có chứa x-100 để nó bằng 0 nhé
ví dụ: \(x^8-100x^7=x^7\left(x-100\right)\), các chỗ khác tách tương tự, đề này em gõ anh nghĩ bị sai đề ròi nhé
a) f(x) + g(x) = (x5 + 2x2 - 1/2x2 - 1/2x - 5) + (-x5 - 3x2 + 1/2x + 1)
= x5 + 2x2 - 1/2x2 - 1/2x - 5 - x5 - 3x2 + 1/2x + 1
= (x5 - x5) + (2x2 - 1/2x2 - 3x2) + (-1/2x + 1/2x) + (-5 + 1)
= -3/2x2 - 4
f(x) - g(x) = (x5 + 2x2 - 1/2x2 - 1/2x - 5) - (-x5 - 3x2 + 1/2x + 1)
= x5 + 2x2 - 1/2x2 - 1/2x - 5 + x5 + 3x2 - 1/2x - 1
= (x5 + x5) + (2x2 - 1/2x2 + 3x2) + (-1/2 - 1/2x) + (-5 - 1)
= 2x5 + 9/2x2 - x - 6
b) f(x) + g(x) = -3/2x2 - 4
Ta có:
-3/2x2 > 0
=> -3/2x2 - 4 > 1 > 0
=> f(x) + g(x) vô nghiệm
a, ta có:
\(f\left(x\right)=x^5+2x^2-\frac{1}{2}x^2-5\)
\(=x^5+\frac{3}{2}x^2-\frac{1}{2}x-5\)
\(f\left(x\right)+g\left(x\right)=-\frac{3}{2}x^2-4\)(t lm tắt nhé)
\(f\left(x\right)-g\left(x\right)=2x^5+\frac{9}{2}-x-6\)
b,Để f(x)+g(x) có nghiệm thì
\(f\left(x\right)+g\left(x\right)=-\frac{3}{2}x^2-4=0\)
\(\Rightarrow-\frac{3}{2}x^2=4\)
\(\Rightarrow x^2=-2\)(k tồn tại)
vậy f(x)+g(x) k có nghiệm.
*) f(1) = 1^100 + 1^99 + ...+ 1 + 1
= 1+ 1 + 1 + ...+ 1 + 1 (101 số 1)
= 101
tương tự:
*) f(-1) = -1 - 1 - 1 ... - 1 - 1 + 1 (100 chữ số 1)
= -100 + 1 = -99
*) đặt f(2) = 2^100 + 2^99 + ...+ 2^2 + 2 + 1 = A
=> 2A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2
=> 2A - A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2 - ( 2^100 + 2^99 + ...+ 2^2 + 2 + 1)
<=> A = 2^101 - 1
=> f(2) = 2^101 - 1
tương tự:
*) đặt f(-2) = -2^100 - 2^99 ...- 2^2 - 2 - 1 = B
=> 2B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2
=> 2B -B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2 - ( -2^100 - 2^99 ...- 2^2 - 2 - 1)
<=> B = -2^101 + 1
=> f(-2) = -2^101 + 1
g(1) = 1 + 1^3 + 1^5 + ... + 1^101 (51 số 1)
= 51
g(-1) = -1 - 1^3 - 1^5.... - 1^101 (51 số 1)
= -51
đặt g(3) = 3 + 3^3 + 3^5 + ...+ 3^101 = A
=> 3^2 * A = 3^3 + 3^5 + ....+ 3^103
=> 9A - A = 3^3 + 3^5 + ....+ 3^103 - (3 + 3^3 + 3^5 + ...+ 3^101)
=> 8A = -3 + 3^103
=> A = \(\dfrac{3^{103}-3}{8}\)
=> g(3) = \(\dfrac{3^{103}-3}{8}\)