K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2020

a/ \(h\left(x\right)=x^4+5x^2+4\)

b/ Do \(\left\{{}\begin{matrix}x^4\ge0\\5x^2\ge0\end{matrix}\right.\) \(\forall x\Rightarrow h\left(x\right)\ge0+0+4=4\)

\(\Rightarrow h\left(x\right)>0\)

\(\Rightarrow h\left(x\right)\) không có nghiệm

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

\(N\left(x\right)=-5x^5+x^4-2x^3+2x^2-x+1\)

Đặt M(x)=0

=>2x+8=0

=>2x=-8

=>x=-4

bn thu gọn 2 đa thức lại rùi thực hiện phép cộng

546859

31 tháng 3 2018

\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)

\(f\left(x\right)=\left(5x^3-x^3-4x^3\right)+\left(2x^4-x^4\right)+\left(-x^2+3x^2\right)+1\)

\(f\left(x\right)=x^4+2x^2+1\)

Cho \(f\left(x\right)=0\)

\(\Rightarrow f\left(x\right)=x^4+2x^2+1=0\)

Ta có:

\(x^4\ge0\)

\(2x^2\ge0\)

Do đó:

\(x^4+2x^2+1\ge0+1\)

\(x^4+2x^2+1\ge1\)

=> Vậy đa thức \(x^4+2x^2+1\) = \(5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\) vô nghiệm.

19 tháng 7 2017

Mình làm gộm 2 ý luôn nhé

Ta có : \(Q\left(x\right)=5x+3x^2+5+x^2+2x^4=5x+4x^2+5+2x^4\)

Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(x^4-5x+2x^2+1\right)+\left(5x+4x^2+5+2x^4\right)\)

\(=x^4-5x+2x^2+1+5x+4x^2+5+2x^4\)

\(=5x^4+6x^2+6\)

Mà : \(5x^4+6x^2\ge0\forall x\)

Nên : \(5x^4+6x^2+6\ge6\forall x\)

Suy ra : M(x) > 0 với mọi x

Vậy M(x) vô nghiệm

19 tháng 7 2017

a) P(x) = x4 - 5x + 2x2 + 1 = x4 + 2x2 - 5x + 1 

Q(x) = 5x + 3x2 + 5 + 1x2 + x4.2 = 2x4 + 4x2 + 5x + 5

        P(x) = x4 + 2x2 - 5x + 1
+
        Q(x) = 2x4 + 4x2 + 5x + 5
_________________________
P(x)+Q(x) = 3x4 + 6x2 + 6

b) Ta có: \(\hept{\begin{cases}3x^4\ge0\\6x^2\ge0\end{cases}}\forall x\)

\(\Rightarrow3x^4+6x^2\ge0\forall x\)

\(\Rightarrow M\left(x\right)=3x^4+6x^2+6\ge6>0\forall x\)

Vậy M(x) không có nghiệm