Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(h\left(x\right)=x^4+5x^2+4\)
b/ Do \(\left\{{}\begin{matrix}x^4\ge0\\5x^2\ge0\end{matrix}\right.\) \(\forall x\Rightarrow h\left(x\right)\ge0+0+4=4\)
\(\Rightarrow h\left(x\right)>0\)
\(\Rightarrow h\left(x\right)\) không có nghiệm
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
\(N\left(x\right)=-5x^5+x^4-2x^3+2x^2-x+1\)
Đặt M(x)=0
=>2x+8=0
=>2x=-8
=>x=-4
bn thu gọn 2 đa thức lại rùi thực hiện phép cộng
546859
\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
\(f\left(x\right)=\left(5x^3-x^3-4x^3\right)+\left(2x^4-x^4\right)+\left(-x^2+3x^2\right)+1\)
\(f\left(x\right)=x^4+2x^2+1\)
Cho \(f\left(x\right)=0\)
\(\Rightarrow f\left(x\right)=x^4+2x^2+1=0\)
Ta có:
\(x^4\ge0\)
\(2x^2\ge0\)
Do đó:
\(x^4+2x^2+1\ge0+1\)
\(x^4+2x^2+1\ge1\)
=> Vậy đa thức \(x^4+2x^2+1\) = \(5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\) vô nghiệm.
Mình làm gộm 2 ý luôn nhé
Ta có : \(Q\left(x\right)=5x+3x^2+5+x^2+2x^4=5x+4x^2+5+2x^4\)
Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(x^4-5x+2x^2+1\right)+\left(5x+4x^2+5+2x^4\right)\)
\(=x^4-5x+2x^2+1+5x+4x^2+5+2x^4\)
\(=5x^4+6x^2+6\)
Mà : \(5x^4+6x^2\ge0\forall x\)
Nên : \(5x^4+6x^2+6\ge6\forall x\)
Suy ra : M(x) > 0 với mọi x
Vậy M(x) vô nghiệm
a) P(x) = x4 - 5x + 2x2 + 1 = x4 + 2x2 - 5x + 1
Q(x) = 5x + 3x2 + 5 + 1x2 + x4.2 = 2x4 + 4x2 + 5x + 5
P(x) = x4 + 2x2 - 5x + 1
+
Q(x) = 2x4 + 4x2 + 5x + 5
_________________________
P(x)+Q(x) = 3x4 + 6x2 + 6
b) Ta có: \(\hept{\begin{cases}3x^4\ge0\\6x^2\ge0\end{cases}}\forall x\)
\(\Rightarrow3x^4+6x^2\ge0\forall x\)
\(\Rightarrow M\left(x\right)=3x^4+6x^2+6\ge6>0\forall x\)
Vậy M(x) không có nghiệm
N(x)=2x^2+3
N(x)co 2 nghiem